
Introductions and Early Motivation

Course Website: https://courses.math.rochester.edu/current/248
Office Location: Hylan 711
Office Hours: TBD
Book: Introduction to Graph Theory (2nd Edition) - Douglas B West

Questions about Student Backgrounds and Interest: (answers to be submitted to me)
What are your names and what's a fun fact about you?•
Which of these topics have you studied in the past/feel comfortable with the basics of?

Math Linear algebra, Set Theory, Combinatorics, Probability, Proof Writing

CS Basic programming, algorithms or data structures

•

What are your main topics of interest? What subjects motivate your interest most/what would 
you like to get out of this class?

•

Idea:
Graphs provide a mathematical way to encode the idea of adjacency

Example: (Koenigsberg Bridge Problem)

Can one cross all seven bridges in Koenigsberg without crossing any of them twice and end up 
back where they started?

Introduction to Graphs
Wednesday, January 11, 2023 6:58 PM
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Example: (Biological, Ecological, Chemical Networks)

How robust is a food web to the extinction of a single species?○

Which stages of a complex chemical process are rate-limiting?○

Given a large complicated system with many parts (many species, many chemical 
compounds, many proteins, etc.) how can we measure the complexity of the structure in a 
rigorous way?

○

Example: (Computational and Algorithmic Questions)

How can we mathematize the idea of computation?○
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How can we encode the intuitive idea of a network in a way computers can effectively 
process?

○

Definition:
A graph  is a triple consisting of

a vertex set  or     
an edge set  or     
a relation from  to  associating each edge to either one or two vertices (called endpoints)

We will often write        for convenient shorthand

Note: 
One may wish to exclude the null graph with    from consideration.

Review as Necessary: 
Basic set theory 

equality of sets○

set notation○

empty set○

subsets○

cardinality○

union, intersection, complement○

disjointness of sets, partitions of sets○

Cartesian product and tuples○

relations, equivalence relations, equivalence classes○

basic modular arithmetic as an example of the previous○

•
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○

Proof theory 
What is a proposition○

conditional statements○

contrapositives of statements○

logical quantifiers, basic structure of proofs of them, negation of quantifiers○

Direct proof, contrapositive proof, proof by contradiction○

Induction○

Recurrence relations○

•

Functions
Functions as mappings from domain to codomain○

composition of functions○

injectivity and surjectivity○

bijections and inverse functions○

growth rates of basic functions (bounded functions, logarithms, polynomials, exponentials, 
factorials, etc.)

○

•

Combinatorics
summation notation over finite sets○

permutations of finite sets○

binomial coefficients,  choose  , the Binomial Theorem○

Combinatorial proofs ○

Pigeonhole Principle○

•

Graph Theory!

Definition:
A loop is an edge where both endpoints are the same

Definition:
Multiple edges are a collection of at least two edges all having the same endpoints as one another.

A Basic Classification:

May Not Have 
Loops

May Have Loops

May Not Have Multiple 
Edges

Simple Graph

May have Multiple Edges Multigraph Pseudograph (or sometimes 
Multigraph)

In what follows, we will in general assume that the term "graph" refers to a simple graph 
unless otherwise specified.

Definition:
A graph  is finite if both  and  are finite sets.
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Definition:
If two vertices      are the endpoints of an edge in    , we say that they are adjacent, that 
they are neighbors, that  connects  and  , and we write    

Note:
For a simple graph, we can identify edges with their two endpoints, so we will often refer to 
"the edge   " to denote the edge connecting these two vertices

Note:
We can think of a simple graph as a pictorial representation of a symmetric (but not 
reflexive!) relation 

Motivating Question:
Does every group of six people contain a subset consisting of three people such that either

none of those people know either of the other two
each of those people knows both of the other two
?

(this is an example of a clique finding problem)

Let  be a set of 6 people 
Define a graph with edges connecting pairs of people who know each other

We could also define a graph with edges connecting pairs of people who don't 
know each other

Definition:

Let        be a simple graph. The complement of  is the graph  
  

on the same vertex set  

with edge set  
  

such that     
  

if and only if     

Definition:
A clique is set of vertices which are pairwise adjacent.

Definition:
An independent set is a set of vertices which are pairwise nonadjacent
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Motivating Question:
Suppose that you are attempting a complicated group project with several parts. Each person 
in your group is to do one part. Knowing that each person may be better at some tasks than 
others, how can you assign tasks to people?

(this is an example of a matching problem)

We could draw a graph with vertices consisting of tasks and people, connecting each 
person to all of the tasks they can do well.

Definition:
A graph        is bipartite if        is the union of two disjoint independent sets.

Motivating Question:
How can we represent the mathematical structure of a Sudoku puzzle (and solve it)?

Let  be the collection of boxes in the puzzle
Let edges connect pairs of boxes which are in the same 3x3 box, the same row, or the 
same column

No two adjacent vertices can be labeled with the same number! "colors"

Motivating Question:
How many colors do we need in order to draw a map of the world so that no adjacent 
countries have the same color?

Definition:
The chromatic number of a graph  is     , given by the minimum number of distinct colors 
needed to label vertices so that all adjacent vertices receive different colors

Definition:
A graph  is  -partite if     can be written as the union of  disjoint independent sets - called 
partite sets.

Proposition:
A graph  is  -partite if and only if       

Motivating Question:
What is the fastest route for me to travel to my home?

Let the vertex set represent road intersections and the edges the roads connecting them
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Let the vertex set represent road intersections and the edges the roads connecting them
Label each edge by distance or travel time

Definition:
A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and 
only if they are consecutive in the list.

Definition:
A cycle is a graph with an equal number of vertices and edges which can be drawn in a circle with 
consecutive edges in the circle connected.

Definition:
A subgraph of a graph  is a graph  such that          and          such that any 
edge in     has the same endpoints in  that it does in  

We say  contains  or contains a copy of  

Definition:
A graph  is connected iff each pair of vertices in  belongs to a path contained in  
Otherwise,  is disconnected.
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Definition:
A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and 
only if they are consecutive in the list.
The length of a path is the number of edges present.

Definition:
A cycle is a graph with an equal number of vertices and edges which can be drawn in a circle with 
consecutive edges in the circle connected.

Definition:
A subgraph of a graph  is a graph  such that          and          such that any 
edge in     has the same endpoints in  that it does in  

We say  contains  or contains a copy of  

Definition:
A graph  is connected iff each pair of vertices in  belongs to a path contained in  
Otherwise,  is disconnected.

Matrix Representation of a Graph

Definition:
Let  be a graph without loops. Suppose that we fix the order of the vertices in     as 
          

The adjacency matrix of  is the  by  matrix     with entries     given by the number of 

edges in  with endpoints        

Now, let us also fix the order of the edges in     as        .
The incidence matrix of  is the  by   matrix     with entries     equal to 1 if   is an 

endpoint of edge   , and equal to 0 otherwise.

What are the adjacency matrix and incidence matrix of this graph?

Section 1.1
Sunday, January 15, 2023 12:00 AM
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What are the adjacency matrix and incidence matrix of this graph?

Question:
Suppose we consider the square of the adjacency matrix                for the 
above graph.
How can we interpret the entries of this matrix?

Question: What happens to the adjacency matrix/incidence matrix if we list the vertices/edges in 
a different order?

Question:
Construct a graph which has the following adjacency matrix

`

What if we don't really care about the specific labels we've given to a vertices of a graph? We'll often 
care more about "structural properties" of a graph that would be the same no matter what we called 
the vertices.

What properties does a "relabeling function" of a graph have?

Definition:
Let  and  be simple graphs. An isomorphism or graph isomorphism is a bijection        
    such that        if and only if              

If there exists a bijection between  and  , we write    
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Definition:
The unlabeled path and unlabeled cycle with  vertices are denoted   and   , respectively.
  is sometimes also called an  -cycle

Definition:
A complete graph on  vertices is a simple graph with all pairs of distinct vertices adjacent, and is 
denoted   

Question:
How many edges are there in a complete graph with  vertices?

(end of lecture 2)
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Definition:
A complete bipartite graph or biclique is a simple bipartite graph such that two vertices are 
adjacent if and only if they lie in different partite sets.
If the first partite set contains  vertices and the second contains  vertices, the graph is denoted 
    

Question:
How many edges are there in     ?

Note:
We will often refer to graphs without explicitly describing or labeling their vertices. In such 
cases, we are implicitly referring to an isomorphism class of graphs.

Sentences like " is a subgraph of  " can be very carefully read to mean "There is a subgraph 
of  which is isomorphism to  " or " contains a copy of  "

Questions like "Is this graph   ?" should be understood as "Is this graph isomorphic to   ?"

Question:
Suppose I fix a vertex set  with  elements, say             
How many distinct labeled graphs can be made from these vertices?

If    , how many isomorphism classes of graphs are there?

Proposition:
If two simple graphs  and  are isomorphic, then their complements are also isomorphic.

Decomposition of Graphs and Some Special Graphs

Question:
Consider the graph   . What is its complement?''

Definition:
We say a graph is self-complementary if it is isomorphic to its complement.

Definition:
A decomposition of a graph  is a list of subgraphs of  such that each edge in     appears in 
exactly one subgraph in the list.

Proposition:
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Proposition:
A graph  with  vertices is self-complementary if and only if   has a decomposition 
consisting of two copies of  .

Example:
  is two copies of   

Example:
  is three copies of   

Note:
In many computational applications, we decompose complicated shapes into triangulations. 
Doing this is fundamentally about graph decompositions!

Note:
Lots of graphs have cute names, some of which are commonly used and others less so

Which of these are self complementary?

There are myriad other specific graphs of interest.
Definition:

The Petersen graph is the simple graph  with     the 2-element subsets of a 5-element set with 
edges joining each pair of disjoint subsets.

Proposition: (for the class)
Given any two distinct points in the Petersen graph, there exists a unique path of length either 1 
or 2 (but not both) connecting them.

Definition:
The girth of a graph is the length of the shortest cycle contained in the graph. If the graph contains 
no cycle, the girth is said to be infinite.

Claim:
The Petersen graph has girth 5.

Claim:
Any complete graph with at least three vertices has girth 3.
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Claim:
Any complete bipartite graph with at least 2 vertices in each partite set has girth 4.

One of the things that makes the Petersen graph really nice is that it has some nice symmetry 
properties. We can encode these properties really precisely.
Definition:

An automorphism of a graph  is an isomorphism from  to  .

Example:

Definition:
A graph  is vertex-transitive if, for every pair         , there exists an automorphism of  that 
maps  to  .

An easy example is the 4-cycle. 
  is not vertex-transitive.

Claim:
The Petersen graph is vertex-transitive.

Note:
Suppose a graph  is vertex-transitive. If we prove a property of the graph is true for some specific 
vertex, it must be true for all vertices!
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Quick review of strong induction…

Definition:
A walk is a list                       of vertices and edges such that, for      the edge   

has endpoints     and   

A trail is a walk with no repeated edges

A    -walk or    -trail has initial vertex  and final vertex  

A    -path is a path whose degree 1 vertices are  and  with the others called internal vertices

The length of a walk is the number of edges present in the walk.

A walk or trail is closed if      

Note:
In a simple graph, it isn't really necessary to specify the edges explicitly for a walk.

Note:
We say one walk contains another if the latter is a sublist of the former

Lemma:
Every    -walk contains a    -path

Proof:
Induct on the length of the walk.

Definition:
A graph  is connected if it has a    -path for all         . Otherwise, it is disconnected.

The connection relation on     consists of those pairs of points for which there exists a    -path 
(we sometimes call such pairs of points connected, but it's a better term to avoid).

Claim:
The connection relation is an equivalence relation.

Definition:
The components or connected components of a graph are the equivalence classes of the 

Section 1.2 - Paths, Cycles & Trails
Thursday, January 19, 2023 4:06 AM
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The components or connected components of a graph are the equivalence classes of the 
connection relation. 
Alternatively, they are maximal connected subgraphs.

A component is trivial if it has no edges, otherwise nontrivial

An isolated vertex is a vertex of degree 0

Claim:
A graph has trivial components if and only if it has isolated vertices.

Proposition:
Let  have  vertices and  edges. Then  has at least    components.

Proof:
If    , this is immediate. Otherwise, adding an edge potentially merges at most 2 components 
into 1.

Question:
What can happen to the number of components in a graph if we delete an edge in a subgraph?

What if we delete a vertex and take the induced subgraph?

Notation:
We write    for the subgraph with a particular edge deleted,    for the subgraph with a 
set of edges  all deleted.

We similarly write    or    for induced subgraphs with specified vertices deleted

We will write     to mean the induced subgraph on a set       

Definition:
A cut-edge or cut-vertex of a graph is an edge or vertex, respectively, whose deletion increases the 
number of components.

Theorem:
An edge is a cut-edge if and only if it does not belong to a cycle.

Proof:
Suppose  has endpoints    . Consider deleting it and look at the multiplicity of paths.
On the other hand, suppose  is contained in a cycle. Then it's not a cut-edge.

(first lecture ended here)

Bipartite Graphs & Cycles
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Bipartite Graphs & Cycles

It can really be a pain in the neck to figure out if a given graph is bipartite. Being able to characterize this 
simply is very helpful.

Notation:
We say a walk is odd (even) if its length is odd (even).

Lemma:
Every closed odd walk contains an odd cycle.

Proof:
If the walk never repeats a vertex, done. Otherwise, we can examine the strictly shorter walk.

Definition:
A bipartition of  is a specification of two disjoint independent sets in  whose union is     

"Let  be a bipartite graph with biartition    " is a phrase we'll find ourselves saying 
frequently.
Synonymously we'll call such a thing a    -bigraph

Theorem: (Koenig 1936)
A graph is bipartite iff it has no odd cycle.

Proof:
Necessity is clear
Sufficiency   Fix a vertex  define an even-odd minimum path length bipartition. Show that 
two points in the same partite set can't be connected by an edge.

(The converse is useful here - if you can find an odd cycle in a graph, then it isn't bipartite)

Definition:
Given graphs           , their union           is the graph with vertex set

      

 

   

and edge set

      

 

   

Example for them:
Write   as a union of 5-cycles. How many are required?
How many 4-cycles are required?
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Theorem:

The complete graph   can be expressed as the union of  bipartite graphs iff     

Proof:
(induct on  )
- (k=1)   fails to be bipartite iff    , so we have the desired result.
- Suppose that the desired statement is true for all smaller values of  

Let           all bipartite
Define sets    such that no edge in   connects two points in the same of these two 
sets
Take the induced subgraphs on    . These are smaller graphs, and we can write each as 
the union of    bipartite graphs.

Let     . Define arbitrary subsets    with cardinality no more than     . They can 
be covered by    bipartite graphs. Define   as the pairwise disjoint union of these, 
and let   contain edges between points of  and of  

Eulerian Circuits

Definition:
A graph is Eulerian if it has a closed trail containing all edges.

We call a closed trail a circuit if we don't specify the initial point, but write points cyclically.

Terminology:
We call a vertex even (odd) if it has even (odd) degree. A graph is even if all vertices are even.

We call a path    maximal if no strictly larger path containing it is contained in  

Lemma:
If every vertex of a graph  has degree at least 2, then  contains a cycle.

Proof:
Take a maximal path with endpoint  
It has at least one neighbor not in the middle of the path by degree considerations
If this neighbor isn't in the path, then the path can be extended to it, given a larger path.

Note:
This argument only works with finite graphs - what goes wrong if the graph is infinite?
Consider the integers.

Note:
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Note:
The above proof is an example of an "extremality argument". These arguments rely on 
supposing a "maximal" example of some type of construction, using the extra information 
about maximality in a useful way.

Theorem:
A graph is Eulerian iff it is even and has at most one non-trivial component.

Proof:
Clearly having one component is a necessary condition, so we assume our graph is connected 
going forward.

Eulerian implies even is straightforward.
Even implies Eulerian:

Strong induction on # of edges. 
 contains a cycle. Remove it, continue. Each component thus obtained is still even.

(lecture made it to here)
Corollary:

Every even graph decomposes into cycles.

Proposition:
If  is a simple graph in which every vertex has degree at least  , then  contains a path of length 
at least  . If    , then  contains a cycle of length at least    .

Proof:
(Extremality argument)
Consider a maximal path; its endpoint can only be adjacent to vertices in the path. Since it has 
degree  , the result follows.
For a cycle, take the furthest neighbor of the endpoint.

It's worth noting that not every vertex of a graph can be a cut-vertex.

Proposition:
Every graph with a non-loop edge has at least two vertices that are not cut-vertices.

(can the class figure out the counterexample with a loop edge?)

Proof:
The endpoints in a maximal path are not cut-vertices, since all of their neighbors are connected via 
the path.

(Common strategies with extremal proofs are to find maximal paths, vertices of maximal or minimal 
degree, maximal connected subgraphs, and so on)

Note:
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Note:
This extremal proof method is deeply related to induction, and the two are in some sense 
equivalent.
We'll reprove the Eulerian cycle theorem using extremality rather than induction to demonstrate

Lemma: 
In an even graph, every non-extendible trail is closed.

Theorem:
A graph is Eulerian iff it is connected and even.

Proof:
Take a trail of maximal length. If it doesn't contain every edge, append that edge onto the trail. It 
is now longer.

Graphs that are Eulerian are "covered" by a single trail. What if we allowed more than 1? Can we figure 
out which graphs can be decomposed into two trails? Three trails?  trails?

Theorem:
For a connected nontrivial graph with exactly   odd vertices, the minimum number of trails that 
decompose it is  ax     

Proof:
Arbitrarily pair up odd vertices and draw an extra edge between them. The resulting graph is 
even and connected. Take an Eulerian trail, and let it disconnect on the newly drawn edges.

(This proof also serves to demonstrate that we can prove pretty general theorems as simple corollaries 
of less general theorems.)
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Definition:
The degree of a vertex  in a graph  is written      or     and is the number of edges incident 
to  , with loops counted twice.

Definition:
Given a graph  , we write     as the maximum degree of vertices and     the minimum 
degree

Definition:
 is regular if          
 is  -regular if it is regular with       

Definition:
The neighborhood of a vertex  is      or     the set of vertices adjacent to  

It's also useful for us to clarify our notation for the size of a graph.

Definition:
A graph has order     if it has  vertices.
A graph has size     if it has  edges.

Notation:
We'll sometimes refer to the set                

Proposition:
If  is a graph, the sum of degrees of all vertices is even.

Corollary:
Every graph has an even number of vertices with odd degree.

Corollary:

In a graph  , the average vertex degree is 
     

    
    , and in particular

     
     

    
           

Question:
How many edges does an order   -regular graph have?

Proposition:
If    , any  -regular bipartite graph has the same number of vertices in any partite set.

Proof:
All edges are between the partite sets. Count them based on edges in the first, then by edges in 
the second to establish equivalence.

Section 1.3 - Vertex, Degrees, and Counting
Friday, January 27, 2023 12:00 AM
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Clever counting methods can be extremely helpful in analyzing graphs. (maybe exclude this 
example?)

Proposition:
The Petersen graph has 10 6-cycles.

Proof:
(Recall the Petersen graph)
Note that the Petersen graph manifestly contains 10 copies of the 'claw', one centered at each 
vertex

 has girth 5, so every 6-cycle is an induced subgraph - each point in such a cycle is adjacent 
to one external vertex. In Petersen graph, nonadjacent vertices have a unique common 
neighbor - take opposite points in the cycle.
Subtract cycle from  , 4 vertices remain, common neighbors have degree 1, last vertex has 
degree 3 - this is a claw.

To show each claw is obtained only once by this procedure, take a claw. Degree 1 vertices in it 
all have a common neighbor, so external vertices cannot coincide. Subtract claw from  , 
remaining graph is 2-regular, must be a 6-cycle.

These types of counting arguments have incredible power in graph theory.

(subgraphs of a graph with a single deleted vertex are sometimes called vertex-deleted subgraphs)

Proposition: (for them)
Let  be a simple graph with vertices        and    . Then

     
        

      

   
              

It's reasonable to ask how well we can, given information about vertex-deleted subgraphs, figure 
out information about a graph itself. In particular, how well this can be done without information 
about labels

Conjecture: (Reconstruction Conjecture)
If  is a simple graph with at least 3 vertices, then  is uniquely determined by the list of 
(isomorphism classes of) its vertex deleted subgraphs.

Extremal Problems -----------------------

We often wish to answer questions of the form: "How big (or small) of an example of ____ can be 
found among things of type _____?"
These are referred to as extremal problems

Proposition:
The minimum number of edges in a connected graph with  vertices is    

Proof:
The path satisfies this bound. 
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The path satisfies this bound. 
Fewer edges cannot connect this many points.

Note:
Somewhat formally written, to show that  is the minimum value of     over some class of 
graphs  , then we must show two things.

      for all    ○

      for some    ○

Proposition:

If  is a simple order  graph with      
     

 
    , then  is connected.

Proof:
Any two vertices are adjacent or have a common neighbor

This proposition is actually part of an extremal problem in disguise.

Proposition:

The maximum value of     among simple graphs of order  is  
 

 
    

Proof:
Let  be an  -vertex graph with two components,  

 
 

 
   

and  
 
 

 
   

Use the previous proposition for the rest.

Notice that in order to solve this extremal problem, we had to find an example for each value of  - a 
family of extremal solutions.  

Definition:
The graph obtained by taking the union of graphs  and  with disjoint vertices is the disjoint 
union or sum    
The graph with  disjoint copies of  is   

-- The previous proof used such a disjoint union.

(Class ended here)
Claim:

       
  

   

Note:
In a similar vein, we sometimes wish to find the largest example of some type within a single 
specified graph (largest clique, highest degree vertex, etc).
To distinguish these from extremal problems, we call them optimization problems

Solving such problems tends to be very complex. Proofs usually tend to describe an algorithm 
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Solving such problems tends to be very complex. Proofs usually tend to describe an algorithm 
(sequence of steps) one could use to find such a optimum.

Theorem:

Every loopless graph  has a bipartite subgraph with at least 
    

 
   edges.

Proof:
Split     into two arbitrary sets    . Take edges connecting these sets.
If this is not more than half the edges, there exists a vertex with more than half of adjacent 
vertices in the same set. Move it to the other set. Repeat. This process will terminate with a 
subgraph satisfying the desired property.

This question could be motivated by a military question or by various social group questions.
Imagine you have a collection of armies each with their own enemy armies. If no two distinct have a 
common enemy, how many "enemy connections" can there be?

Question:
How many edges can be there be in an order  graph which contains no triangles?

Definition:
A graph  is  -free if  has no induced subgraph isomorphic to  

Theorem:

The maximum number of edges in a   -free simple graph of order  is  
  

 
   

Proof:
Let  be such a graph, and  its vertex of maximal degree,  . 
No two neighbors of  are adjacent, so each edge is between an element of     and its 
complement, or between two elements of its complement. Thus,

     

 

      

     

The former sum is at most       

The expression       is maximized when   
 

 
 

Let's try to prove this without calculus, though
The expression       represents the number of edges in       

Move an from size  set to size    set gains    edges, loses    , so change of 
        

To achieve this minimum, consider
 

 
 
 
     

 
 
   

Note:
In principle, we could try to prove this kind of theorem by induction. However, it might be 
quite tricky and one has to be quite cautious. What goes wrong with the following argument 
for the previous theorem?

Base Case:    - this case is immediate
Induction Step:

Suppose the statement holds for    , so the complete graph listed earlier is extremal 
in this case.
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in this case.
Add a new vertex to it to form a triangle-free graph with    vertices
As long as new vertex is only adjacent to vertices from one partite set, this creates no 
triangles. This gives the new complete bipartite graph, completing the proof.

Fails because we aren't certain a priori that adding a vertex to the previous extremal case is 
actually going to give the new extremal case, and we haven't proven that

Takeaway: If doing an inductive proof - make sure you start with an arbitrary thing satisfying 
the    -case and attempt to shrink it, rather than trying to grow the  -case.
Schematically, if the induction proof is for the claim          for all  of size  

 satisfies        satisfies          satisfies         satisfies     

Graphic Sequences ----------

We've previously used degrees as a way to think about graph isomorphism. But degree of a single 
vertex isn't a meaningful graph invariant. How can we phrase degree in such a way as to make it a 
graph invariant concept?

Definition:
The degree sequence of a graph is the list of vertex degrees, usually written in nonincreasing 
order 

          

Question:
Can any arbitrary degree sequence be realized by a graph?

2,2,3,4?

Proposition:
Iff    is even, then the given sequence is the degree sequence of some graph.

Proof:
(Necessity) Degree sum formula
(Sufficiency) Connect pairs of odd vertices. Then draw a whole bunch of loops.

This theorem is much harder, and not actually true, if we don't allow loops or multiple edges. 
(Consider 2,0,0,0)

Definition:
A graphic sequence is a list of nonnegative numbers that is the degree sequence for a simple 
graph. A simple graph with a given degree sequence "realizes" that sequence

There are a lot of possible ways to characterize this. Multiple such characterizations can be found in 
Sierksma-Hoogeveen (1991)

Idea:
How could we know if the sequence 3,3,3,3,3,2,2,1 is graphic?
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Let's try to construct one - there's a vertex of degree 3 - could all of its neighbors also have 
degree 3?
If so, we could remove it from the graph, neighbors would now have degree 2. The resulting 
graph would have to have degree sequence

3,2,2,2,2,2,1 
There's a vertex of degree 3, could all neighbors have degree 2?
If so, remove it, neighbors now have degree 1. Resulting graph would have degree sequence

2,2,1,1,1,1
Repeat

1,1,1,1,0
1,1,0,0
0,0,0
0,0
0

Draw each graph and build up

(lecture ended halfway through this proof)
Theorem: (Havel [1955], Hakimi [1962])

For    an integer list  of size  is graphic if and only if   is graphic, where   is obtained 
from  by taking the largest element  of  and deleting it while decrementing the following 
 -largest elements by 1.
The only 1 element graphic sequence is     

Proof:
The 1 element case is trivial.

Suppose we have a sequence  of length more than 1 and a corresponding sequence   (written 
in decreasing order) which is realized by a graph   

Attach a new vertex to   with  connections to vertices with degrees         
          

Suppose  is realized by a graph  
Let       have degree     
Let  be a set of vertices in  having degrees             

If       , done
Else (modify  to increase         )

There must exist    and    with  not adjacent to  but  adjacent to  
By necessity,          

Must be a vertex  connected to  but not  
Switch the connections up

Repeat previous step as necessary

The procedure in the previous proof is kind of interesting, in that it codifies a particular way we can 
modify a graph without changing any vertex degrees.

Definition:
A 2-switch is the replacement of a pair of edges   and   in a simple graph by edges    and 
  , given that neither of the latter were already in the graph
(draw)

These operations are surprisingly powerful!
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These operations are surprisingly powerful!

Theorem: (Berge 1973)
If    are two simple graphs with vertex set  , then            for every    if and 
only if there is a sequence of 2-switches that transforms  into  

Proof:
For sufficiency, 2-switches preserve vertex degree

For necessity, go by induction with    base case (degree sequence is a complete invariant 
here and below)
Transform both  and  using the previous strategy to ones where the highest degree vertex 
connects to the next highest degree vertices
Delete highest degree vertex from both, use induction.
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Graphs as we've discussed them are pictorial representations of symmetric relations on a set  

Of course, in general relations need not be symmetric. Can we generalize our discussions of graphs to 
incorporate this case? How much of what we previously introduced remains? What changes?

Example:
Suppose we consider the relation on                given by    if     mod 7

Draw this as a directed graph

Definition:
A directed graph or digraph  is a triple consisting of a vertex set     , an edge set     and a 
function assigning to each edge an ordered pair of vertices. 

If        we say  is the tail and  is the head of the edge, and we say  is an edge from  to  

We will often identify an edge with this ordered pair of vertices, calling    an edge
We also say that  is a successor of  , and that  is a predecessor of  
We write    as  "there is an edge from  to  "

Definition:
In a digraph, a loop is an edge for which the tail and head coincide.
Multiple edges are edges having the same ordered pair of endpoints.
A digraph is simple if there are no multiple edges

(Note: having a loop is permitted for simple digraphs!)

Definition: (tangential)
Finite state machines

Collection of states is vertices
Edges represent possible transitions (often labeled with causative descriptions)

Turing Machines (if desired)

Definition: (tangential)
Markov Chains

Collection of states is vertices
Edges are labeled by their probability, such that the total probability out of each vertex is 1
(explain this - simple example of weather or such?)

We can define a few similar kinds of graphs in this case as we did in the undirected graph case)

Section 1.4 - Directed Graphs
Monday, February 6, 2023 5:27 PM
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We can define a few similar kinds of graphs in this case as we did in the undirected graph case)
Definition:

A digraph is a path if it is a simple digraph whose vertices can be linearly ordered so that    if 
and only if  immediately follows  in the order.

A cycle is similarly defined with an ordering of the vertices as points on a circle.

Note:
Digraphs give us a general way to encode relations

Any arbitrary function      induces a relation   on  given by             

(This relation is called the graph of  )

This, in turn, gives us a digraph, the functional digraph of  ! (This is the very basics of the simplest 
case of dynamical systems)

Proposition: (decide whether or not this is worth including)
If  is a finite set and      , then the functional digraph consists of disjoint pieces 
consisting of cycles each with a finite number of attached 'predecessor paths'

Note:
Some people use "node" and "arc" instead of "vertex" and "edge" for digraphs.

Now, we'd like to relate this slightly more general case to what we already know, as much as possible.

Definition:
The underlying graph of a digraph  is the graph  with the same vertex set obtained by treating 
the edges of  as unordered pairs

Definition:
We can define subgraphs, isomorphisms, decompositions, unions of digraphs just as with graphs.

Definition:
The adjacency matrix of a digraph  is the matrix with the entry at    giving the number of edges 
in  from   to   

In the incidence matrix     of a loopless digraph  we set the entry at    to   if   is the 
tail of   , to   if   is the head of   , or 0 otherwise.
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Question:
What can we say about connectedness? 
(Draw a picture to illustrate why this is a nuisance)

Definition:
A digraph is weakly connected if its underlying graph is connected. 
A digraph is strongly connected or strong if there is a path from  to  for each pair of vertices 
   

Strong components of a digraph are maximal strong subgraphs.

Note:
For regular graphs, a graph was the union of its components.

Is a digraph necessarily the union of its weak components?
What about its strong components?

(lecture ended here)

Application: (Basic game theory)
Two player games can be written as finite state machines
Vertex sets are states of the game with edges connecting states which are connected by a 
single move.
Some states are winning states for player 1, some others are losing states.

This framework is incredibly useful for asking questions about optimal strategies in a 
game, or in developing AI frameworks for such tasks

Suppose that we have a game such that the win states  are such that whichever play makes 
a move which enters the set  wins the game, with no edges leaving  

(Nim [that game with picking 1 or 2 pebbles] strategy idea here)
Suppose you can identify a set of states  containing  satisfying two properties

No two vertices in  are adjacent.○

Every vertex in  
  

has an outgoing edge to a vertex in  ○

If you can make a move that brings the game to a state in  , you will win (without any 
subsequent mistakes)

Definition:
A kernel in a digraph  is a set       such that  induces no edges and every vertex 
outside  has a successor in  .

Question:
When can we guarantee the existence of a kernel in a digraph? Are there good techniques to 
finding them?

Theorem: (state, but don't prove) (Richardson 1953)
Every digraph having no odd cycle has a kernel
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Every digraph having no odd cycle has a kernel

One of the most useful concepts for graphs was the idea of degree. How is this altered in the 
directed case?

Definition:
Let  be a vertex in a digraph. The outdegree      is the number of edges with tail  . The 
indegree      is the number of edges with head  

The out-neighborhood or successor set      is the set of successors.
Likewise, in-neighborhood or predecessor set      

For a digraph  , we have minimum and maximum indegrees and outdegrees      and 
     

Proposition:
In a digraph, the sum of indegrees and outdegrees are both equal to the number of edges.

We can define the equivalent of degree sequences, too!

In this case, we would be interested in a list of "degree pairs"          
      

Proposition:
A list of pairs of non-negative integers is realizable as the degree pairs of a digraph if and only 
if the sum of the first coordinates equals the sum of the second coordinates.

Is there an equivalent to the Havel-Hakimi criterion? 
Stating such things tends to be a pain in the neck. Typical techniques involve transforming digraphs 
into graphs in some way, then using that transformation to translate results.

Definition:
The split of a digraph  is a bipartite graph  whose partite sets      are each copies of 
    , consisting of points      for each       
An edge connects   to   in  if    in  

Note:
When one defines such a transformation, it's often helpful to ask what properties are and are 
not translated over in a convenient way
How does degree in the split of a digraph relate to indegree/outdegree? (in a reasonably clear 
way)
How does connectedness relate? (not really at all)

Can one invert the construction of the split? Namely, given a    -bigraph with          , 
can one construct a directed subgraph from it whose split is the original graph? (Yes, just use 
a bijection between partite sets and done)
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Can we ask questions about Eulerian cycles on directed graphs?
Definition:

We can define trails, walks, circuits, the connection relation in the same way as for graphs, with 
the only caveat being that motion along an edge must go from the tail to the head

Definition:
An Eulerian trail in a digraph is a trail containing all edges. An Eulerian circuit is a closed trail 
containing all edges. A digraph is Eulerian if it has an Eulerian circuit.

Proving which digraphs are Eulerian is mostly the same as in the graph case. First, prove a lemma.
Lemma:

If  is a digraph with        then  contains a cycle. The same can be said if        

Proof:
(maximal path argument)

Theorem:
A digraph is Eulerian if and only if            for each vertex  and the underlying graph 
has at most one nontrivial component.

Application: (De Bruijn Cycles)
Question:

Is it possible to write   binary digits in a cyclic order such that all substrings of length  are 
different binary strings?

Solution:
Define a digraph   with vertices given by  -digit binary strings, and directed edges 
between   and   if   is obtained from   by deleting the first digit and appending a new 
digit to the end. (edges are usually labeled, as well)

(Draw   ,   )

Claim:
  is strong (there's actually always a path of length  )

Claim:
  is Eulerian

These graphs are called de Bruijn graphs of order  on an alphabet of size 2.
(One can define similar things for larger alphabets as well)

Orientations and Tournaments -------

Quick Question:
How many distinct simple digraphs are there on a given vertex set?

It's important for us to have a number of ways to transition between graphs and digraphs. One way to 
go from a graph to a digraph is to just assign directions to all the edges.

Definition:
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Definition:
An orientation of a graph  is a digraph obtained from  by picking an orientation (   or   
 ) for each edge        
An oriented graph is an orientation of a simple graph.
A tournament is an orientation of a complete graph.

(It's called a tournament by analogy with a collection of sports teams playing games or such in a 
"round-robin tournament")

Idea:
One thinks of    as imagining " defeats  "

Note:
Following this analogy, the outdegree sequence of a tournament is called its score 
sequence

Question:
In a tournament, how can one determine the indegrees if given the outdegrees?

Proposition:
Oriented graphs are loopless simple digraphs without any cycles of length 2.

Question:
How many oriented graphs are there on a given vertex set?

Question:
How many tournaments are there on a given vertex set?

Tournaments may not necessarily have a single "winner", but we can nonetheless characterize 
those teams which did the "best" in some sense.

Definition:
In a digraph, a king is a vertex from which every vertex is reachable by a path of length at most 2

Note:
In the context of tournaments, a king is a vertex  such that for every other vertex  , either   
 
or there is a third vertex  such that    and    

(Kings need not be unique!)

Proposition: (Landau 1953)
Every tournament has a king.

Proof:
Take a vertex which isn't a king. 
Then there's a  not reachable from  in length 2. 
Then    and for any  for which    one has    as well
Thus  has higher outdegree than  . 
Repeat argument on  . 

Corollary:
Any vertex in a tournament with maximal outdegree is a king.
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Any vertex in a tournament with maximal outdegree is a king.
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When we study graphs as networks, we're often interested in one of two features.

Efficiency - how well does a graph connect a collection of vertices?
Resiliency - often determinable by looking at the cycle structure of graphs

Trees will let us study the former

Definition:
A graph with no cycle is acyclic, or a forest

A tree is a connected acyclic graph.

A leaf (or pendant vertex) is a vertex of degree 1

Examples:
Paths are trees
Claws are trees

Proposition:
All trees and forests are bipartite.

We will often be particularly interested in finding large trees as subgraphs of a given graph.

Definition:
A spanning subgraph of  is a subgraph with vertex set     

A spanning tree is a spanning subgraph that is a tree.

Trees have many, many properties which are extremely useful. We'll want to establish that all of 
these properties are equivalent, so that if we find one of them to be true then we know all are.

Lemma:
Every tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex 
tree produces a tree with    vertices.

Proof:
Take a maximal path to get leaves.

Note:
This lemma has the useful implication that all trees with  vertices can be built by attaching a 
new vertex to a tree with    vertices.

Section 2.1 - Basic Properties of Trees and Distance
Monday, February 13, 2023 11:39 PM
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Theorem:
For an n-vertex graph  with    , the following are equivalent.

A)  is connected and has no cycles
B)  is connected and has    edges
C)  has    edges and no cycles
D)  has no loops and has, for each         , exactly one    -path

Proof:
First prove that any two of {connected, acyclic,    edges} implies the third.
A  B C  by induction on  . Take a graph with  -vertices, remove a leaf

B  A C  Delete edges until  is acyclic. The resulting graph is connected, so must have at least 
   edges.

C  A B  Split into co ponents  each co ponent  ust satisfy A  su  vertices

Now we prove equivalence of D with first three
A   D Take two different paths  find a cycle.
D   A If  has a cycle, that's two paths between a pair of vertices.

Corollary:
Every edge of a tree is a cut edge

Adding one edge to a tree forms exactly one cycle [draw a picture]

Every connected graph contains a spanning tree.

The set of spanning trees of a graph will tell us a lot about the structure of the graph. We'll need a 
few basic propositions in this direction.

Proposition:
Suppose     are spanning trees of a connected graph  and suppose             
Then there is an edge              such that

      
is a spanning tree of  

Proof:
Every edge is a cut edge. Rejoin components and count edges.

This proposition is really similar, but we do the addition and subtraction in the other order
Proposition:

Suppose     are spanning trees of a connected graph  and suppose             
Then there is an edge              such that

       
is a spanning tree of  

Proof:
One has a unique cycle in     .  can't contain the whole cycle.

Note:
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Note:
One can actually find   to satisfy both propositions simultaneously.

Every graph which is 'connected enough' contains a great variety of different trees.
Proposition:

If  is a tree with  edges and  is a simple graph with       , then  is a subgraph of  

Proof:
Induction on  .    is trivial - just a vertex

Take a leaf  in  , let  be its neighbor.  contains       since           
Let       correspond to        . Necessarily,   cannot contain all  -neighbors of  

Note:
The graph    has      but contains no tree with  edges.

One might wish to prove an equivalent proposition based on the number of edges in  .
The conjectured bound is that if              then  contains all trees of order  

(lecture ended here)
Measuring Distance in Graphs ~~~~~~~~~~~~~~~~~~~~~~~~~~~

Definition:
If  has a    -path, the distance from    is        or       is the least length of a    -
path.
If  has no    -path, we set         

The diameter of  is         ax              

The eccentricity of a vertex  is       ax            

The radius of a graph  is        in          

Note:
The diameter is the maximum vertex eccentricity.

Question:
What can we say about radius/diameter if a graph is disconnected?

Question:
On    vertices, what is the tree with smallest diameter?

We can think of diameter of a graph as reflective of two things
The order of the graph - many vertices means it is possible for paths to be longer
The number of missing edges - the fewer edges present, the more circuitous paths will have to 
be

Theorem:

   Graph Theory Page 36    



Theorem:

If  is a simple graph, then         implies       
  

  

Proof:
Since  does not have diameter 1 or 2, there are nonadjacent vertices    without a common 
neighbor.

Every vertex in  
  

must be connected to at least 1, then. 
Worst case, from   to  to  to   (draw)

There are many, many ways to measure the idea of centrality in a graph. (There will be some 
homework about this eventually.)
Here's one way.

Definition:
The center of a graph  is the subgraph induced by the vertices of minimum eccentricity.

Question:
Under what conditions is the center of a graph the whole graph?
- All vertices have same eccentricity - radius = diameter

For trees, we can characterize the center pretty well.
Theorem: (Jordan 1869)

The center of a tree is a vertex or an edge.

Proof:
By induction on number of vertices.
If    then the center is the whole tree.

If    , delete every leaf of the tree to get a smaller tree   .
            for all remaining vertices  
The leaves do not minimize eccentricity.

If we're treating a graph as a network, then we'll be quite interested in asking how short paths that can 
get around the graph are. We can quantity this, in an average sense, by looking at all possible shortest 
paths.

Definition:
The Wiener index of a graph  is     (or     ) given by the formula

             

 

        

This kind of quantity is really important if we take a sequence of finite sets growing to an infinite 
set - discontinuities in the (appropriately normalized) limit can be used to tell us about phase 
transitions of materials [Wiener did it with paraffin]

For finite graphs, we can characterize the extremal cases of the Wiener index without too much 
trouble.
Theorem:

Among trees with  vertices, the Wiener index     is minimized by stars and maximized by 
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Among trees with  vertices, the Wiener index     is minimized by stars and maximized by 
paths, in both cases uniquely.

Proof:
Tree has    edges, so    pairs of vertices are distance 1, and all other pairs of vertices 
are more distant.
Star achieves 2 for all others, which is minimal. Every other tree has some pair of points of 
distance 3.

For Wiener index of paths, note that

               
 
 
 

Since        and        , we have        
   

 
 

We prove maximization by induction on  .    is immediate.
Take a leaf  in a tree  .

                   

 

      

Certainly               by induction. Claim that the set of distances from  to other 

points in tree is all integers between 1 and  for some  (with some multiplicity possible). 
This set is 1 through    iff  is a path, otherwise the sum is strictly less.

Thinking of the Wiener index as a measure of "the most connected graph", the next proposition is 
intuitive.
Proposition:

Out of connected  -vertex graphs, the complete graph minimizes  

Here's a useful little lemma, with a similar ideas as the previous proposition.
Lemma:

If  is a subgraph of  , then                

Corollary:
If  is a connected  -vertex graph, then           

Proof:
Take a spanning tree.

If more time remains, talk about rooted trees, levels of trees, regular or balanced trees, and infinite 
trees. You could define the free monoid if desired.
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Today we're concerned with counting the number of trees on a specified vertex set. (not up to isomorphism)

2 vertices (1 and 2) - 1 tree
3 vertices (1, 2, 3) - 3 trees
4 vertices (1, 2, 3, 4) - 16 trees

To figure out a clever way to count trees, we'll use an algorithm to represent a tree on a given vertex set    

Algorithm: (Prufer Codes)
Input: a tree  with a given vertex set    
Output:                 a list of    values in  

At the  -th step of the algorithm, delete the leaf of the current tree with smallest label (in  ). 
Let   be the label of the neighbor of that leaf.

This graph has Prufer code (3, 1, 1, 2, 2, 3, 3)

Question:
What does the tree with Prufer code (3, 7, 1, 2, 2, 7, 8) with      look like?

Technique for Finding a Graph from a Code:

Start with a graph on vertex set  with no edges. 
(idea - we'll go through a loop, each time adding an edge and marking one point)
At the  -th step:

Consider the portion of the Prufer code starting with   (ignoring all to the left of this)
Not all unmarked vertex labels can occur in this list (too short), let  be the smallest missing 
unmarked label
Include the edge    

Mark  
At the end, two unmarked vertices remain. Connect them.

Section 2.2 - Spanning Trees and Enumeration
Monday, February 20, 2023 11:49 PM
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Theorem: (Cayley's Formula [1889]) 
For a set     of size  , there are     trees with vertex set  

Proof: (Prufer 1918)
We'll show that our  is a bijection.

We proceed by induction on  . The    case is obvious.
The    case is the real base case, having an empty Prufer code.

For    
Any leaf of  does not appear in the Prufer code       
In the process of determining the  , the first vertex not appearing in  was some    , 
the first deleted, and was connected to   

Thus, for any  for which       ,  is a leaf of  connected to   

Then    is a tree which must have Prufer code              on set      

Use induction hypothesis to show that    is uniquely defined.
There's only one way to attach  , so we're done.

This technique of proof gives us an easy way to count the number of trees after specifying each 
vertex's degree on a specified vertex set.

Corollary:

Given positive integers        summing to     , there are exactly 
      

        
       trees with 

vertex set    such that vertex  has degree   for all  

Proof:
If       has degree  , it appears    times in the Prufer code for  

Then we are counting lists of length    with       indistiguishable entries for each  
Use division rule of combinatorics.

Note:
This counting stuff brings us pretty naturally to our main topic for this section - counting the 
number of spanning trees in a graph.
This is an incredibly important task for understanding properties of a graph.
Applications in circuit design, social network analysis, clique-finding, and so on

Each distinct tree on a specified vertex set  is a spanning tree in the complete graph on  
So we've solved this counting problem for complete graphs!

What about other graphs?

Example:
Consider the house

Spanning trees either do or do not 
contain the right roof segment.
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We can generalize the idea of counting used above.

Definition:
In a graph  , the contraction of edge  with endpoints    is the graph denoted    , with    
amalgamated into a single vertex. For each edge other than  incident on  or  (with 
multiplicity) draw an edge incident on that new vertex.

(draw an example)

Note:
The contraction of a graph is NOT necessarily a subgraph!

Proposition:
Let     denote the number of spanning trees of the graph  . For       not a loop, 

                  

Proof:
Spanning trees that omit  are spanning trees of    
We define a bijection from spanning trees of  including  to spanning trees of    

For any spanning tree  of  including  , the contraction of  in  yields a spanning tree 
of    (it is spanning with right number of edges)
All other edges maintain their identity and labels under contraction, so no two distinct 
spanning trees of  can map to the same spanning tree of    

This can be undone by expanding the contracted edge back out, so the described function is a 
bijection.

Note:
This turns the task of finding spanning trees for a graph with  edges into the task of finding 
all spanning trees of two graphs with    edges

-- Very inefficient algorithm

Can be improved slightly with the following remark.

Remark:
If  is a connected loopless graph with no cycle of length at least 3, then     is the product of 
the edge multiplicities. A disconnected graph has no spanning trees.

This algorithm is still terrible. Making this into a computationally tractable task requires some 
additional cleverness.

Definition:
Given a loopless graph  , the Graph Laplacian is the matrix      with  the adjacency 
matrix of  and  the diagonal matrix of vertex degrees.
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matrix of  and  the diagonal matrix of vertex degrees.
(some people might term this the negative Laplacian, it depends on who you ask)

This matrix contains an *incredible* amount of information about a graph, and is one of the 
main conduits for linear algebra techniques into graph theory.

Note:
Why is this related to the second derivative?
                 
                                        

Theorem: (Matrix Tree Theorem)
Given a loopless graph  with vertex set        . Let  be the graph Laplacian of  . Then 
    is given by any entry in the cofactor matrix of  .
That is to say, if   is the matrix formed from  by deleting row  and column  , then

            det  

Let's do at least one example before we delve into the fairly complicated proof.

Do the graph on 4 vertices with only one edge missing (the kite). (degree sequence 3 3 2 2)
Should get 8 spanning trees.

Proof:
Lemma 1:

If  is a matrix such that the entries of  in each row sum to 0, then the cofactors of  
are constant in each row.

[this is a fairly technical little linear algebraic lemma, the strategy to prove it is to note that 
the cofactor matrix is related to the determinant of a matrix to the matrix inverse if it exists]
We use that lemma to argue that it suffices to consider    

(write out the example from the book and use it as a reference for students as you go)

Lemma 2:
If  is an orientation of  and  the incidence matrix of  , then      

Proof:
(recall with edges        the incidence matrix consists of values    which are 1 if   

is the tail of   , -1 if its the head, and 0 else)

The entry at index    in    is the dot product of rows  and  of  
If    , this product includes a   for each edge between   and   

If    , this includes a   for each incident edge in  

(do an small example if people look very confused?)

Lemma 3:
If  is an orientation of  and  is the incidence matrix of  , let  be a      by    
  submatrix of  . Then det     if the corresponding    edges form a spanning 
tree of  . Otherwise det    

Proof:
In the case where the edges form a spanning tree, we proceed by induction on  .
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In the case where the edges form a spanning tree, we proceed by induction on  .
If    , we have a 0x0 submatrix which we'll definitionally take to have determinant 1.
If    

Let  be the spanning tree. It has at least two leaves, such as  , at least one of 
which is represented in the matrix. 
The row corresponding to  has only one non-zero entry in  .
Compute determinant by expanding along this row.

Only relevant      by      matrix is a submatrix of the adjacency matrix 
for    

By inductive hypothesis, the determinant is   if    is a spanning tree (which it is)

On the other hand, if edges corresponding to columns of  do not form a spanning tree, 
they contain a cycle  
Take a linear combination of columns   by

                   

with     if the corresponding edge is not in  ,   if followed in the right direction by 
 ,   if followed in reverse direction by  
Result must be 0 at each vertex, hence columns are linearly dependent, so      

(We need one more tool from linear algebra)
Theorem: (Binet-Cauchy Formula)

For  an  by  matrix and  an  by  matrix with    , then

det     det    det   

 

 

where the sum runs over all subsets of size  in    , and      are the submatrices 
consisting of rows with indices in  

Now, we use these lemmas to determine det   

Let  as in the above lemmas, and   the result of deleting row  of  
Note           by Lemma 2
If      , rows are linearly dependent so the determinant is 0. We assume      

Apply Binet-Cauchy to   . In this case, the two matrices are transposes of one another, so 
have equal determinants.
Apply Lemma 3 to see that the sum reduces to a sum over edge sets which are spanning trees.

Decompositions and Graceful Labelings ------------------------------

We can decompose any graph into a union of edges, that is to say, trees of size 2. When can we 
decompose a graph  into copies of a larger tree  ?

Certainly we need     to divide     , and certainly          
These conditions are not sufficient, though.

Conjecture: (Ringel 1964)
If  is a fixed tree with  edges, then      decomposes into     copies of  

This conjecture is hard to approach directly, so work focuses on a stronger conjecture.

Definition:
A graceful labeling of a graph  with  edges is a function

              
such that distinct vertices are assigned distinct numbers and 
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A graph that admits a graceful labeling is called graceful

(This property amounts to requiring that the difference in labels across any edge in the graph is distinct

Conjecture: (Graceful Tree Conjecure - Kotzig, Ringel 1964)
Every tree has a graceful labeling.

While obviously we can't prove any open conjectures in class, we can prove that this conjecture would 
imply the previous one.

Theorem: (Rosa 1967)
If a tree  with  edges has a graceful labeling, then      admits a decompositioninto     
copies of  

Proof:
Consider vertices of      as congruence classes modulo     
Define subgraphs          by

                   

     contains an edge between    and    iff the graceful labeling of  contains an 
edge between labels  and  

Every edge of      is contained in some   because:
There exists vertices in the labeling of  with any specified difference, so just translate 
the values until they match

No edge    of      is contained in   and   for    because:

then    and    are adjacent in  
and    and    are adjacent in  
This violates the property of a graceful labeling, that all label differences occur only 
once.

Note:
While it is hard to find graceful labelings for any arbitrary tree, there are a lot of trees where a 
strategy is known.

Definition:
A caterpillar is a tree in which a single path (the spine) is incident to (or contains) every edge

(draw)

Theorem:
A tree is a caterpillar iff it does not contain the tree  

Proof:
Let  be a tree, and   the tree with all leaves deleted.
 contains  iff   is has a vertex of degree 3 (thus not a path).
If   is a path, it's a spine.

Spanning Trees in Digraphs --------------------------------------------
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We can talk about spanning trees in digraphs as well - there's a more general theorem that implies 
our former counting one for graphs when a digraph is symmetric

Definition:
A branching or out-tree is an orientation of a tree having a root of indegree 0 and all other 
vertices of indegree 1.
An in-tree is an out-tree with reversed orientation.

Theorem: (Directed Matrix Tree Theorem - Tutte 1948)
Given a loopless digraph  , let        and        with   (  ) the diagonal 
matrix of indegrees (out-degrees) of vertices of  and 

       

the matrix with     the number of edges from   to   

The number of spanning out-trees (in-trees) of  rooted at   is the value of any cofactor in 
the  th row of   ( th column of   )

We won't discuss a proof of this, though similar ideas are involved as in our proof for graphs.

There are some nice results about our ability to produce search algorithms that are related to this 
theorem.

Lemma:
If  is a strong digraph, then every vertex is the root of an out-tree (and an in-tree)

Proof:
Fix a vertex, iteratively add edges to produce an out-tree on a growing set  , there must exist 
an edge leaving  by strong connectivity.

Having an in-tree is also really helpful for finding Eulerian circuits!

Algorithm: (Eulerian circuit in a digraph given a spanning in-tree)
Input: Eulerian digraph with no isolated vertices and a spanning in-tree  consisting of paths 
to a vertex  

Strategy:
First, for each vertex  , list the edges leaving  in an arbitrary order, with the one 
leaving it that is contained in  listed last (for  , all are arbitrary)

Begin at  . At each step, traverse the first not-already-traversed edge leaving the 
current vertex listed on that vertice's outward edge list.
Eventually you will end at  with no more edges to traverse.

Claim: (I won't prove this)
The algorithm above always produces an Eulerian circuit.
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In applications, the structure of a graph is often insufficient for purposes at hand.

Definition:
A weighted graph is a graph with numerical labels on edges.

Labeling edges and vertices in different ways is a great way to make the structure of a graph relevant to 
a problem at hand.

We often interpret such weights as distances, in which case we must require that they be non-negative
(or sometimes strictly positive)

Optimization problems can be asked about various features of weighted graphs.

Task: Find the spanning tree of a connected weighted graph with minimum weight

Algorithm: (Kruskal's Algorithm - for minimum spanning trees [a greedy algorithm])
Input: a weighted connected graph  

Idea: Work with an acyclic spanning subgraph and expand it piecemeal with low weight edges.

Set  as the empty graph on our vertex set.
Loop:

Among edges of  between two distinct components of  , pick the one of lowest weight
Add it to  

This is a pretty naïve algorithm, but it happens to be optimal and really easy to implement, which is 
awesome

Theorem: (Kruskal 1956)
The above algorithm produces a minimum weight tree.

Proof:
The algorithm does construct a tree, since  is connected and  is always acyclic.

Let  be the produced tree and   a minimal tree. If     then there is some first edge  picked 
in the construction of  not present in   
    contains a cycle with some   not in  
Consider        
At the step of the construction of  that picked  ,  and   were both available

Hence           
So        has either equal (if so, repeat the argument - having a spanning tree which 
contains even more early vertices of  ) or strictly less weight than   , a contradiction.

Task:
Find the shortest path between two points.

This is a particularly famous algorithm, built on the idea that if the shortest path from  to  goes 
through  , then necessarily it must be the case that the subpath from  to  is also shortest.

Section 2.3 - Optimization and Trees
Wednesday, February 22, 2023 4:54 PM
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Definition:
In a weighted graph, the distance       between two points is the sum of the weights of the 
shortest path between two points.

Algorithm: (Dijkstra's Algorithm)
Input: A graph (or digraph) with non-negative edge weights and an initial vertex  

Weights      for vertices   with weight understood as  if   is not an edge in 
the graph

Idea:  will be the set of vertices whose smallest path is known
        will be the shortest path from  to other vertices known so far

Set      ,       ,           for all    
Loop:

Select  outside  with     minimized, add  to  
For each edge   between  and a vertex    

Update       in                 

Stop if  contains all vertices or       for all    

Set            for all  

(go through an example of this algorithm operating, just draw an arbitrary graph to do it)

Theorem:
Given a graph or digraph  and a vertex       , Dijkstra's Algorithm computes       for 
every       

Proof:
We claim two things are true while the algorithm is operating

1) If    , then            
2) If    , then     is the least length of a    path reaching  directly from  

We prove these by induction on the size of  .
Both immediately true when size is 1.
Inductive step:

Let  be the vertex not in  with smallest     .
The algorithm will choose  
By inductive hypothesis, the shortest path to  from  is     [by minimality of  ]

Then after updating  ,            

For all other vertices    , we must now consider paths through  that go to  and then 
directly on to  
If this is shorter, it's accounted for. If it isn't, then we don't change  

Note:
If we apply Dijkstra's algorithm to an unweighted graph, the result is known as a Breadth-
First Search algorithm

Rooted Trees and Their Uses ----------------------------------------------------------------------------------
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Rooted Trees and Their Uses ----------------------------------------------------------------------------------

Definition:
A rooted tree is a tree with one vertex  chosen as root. 
For each vertex  , let     be the unique path from  to  
The parent of  is its neighbor in     
The children of  are all other neighbors
The ancestors are the vertices of       
The descendants are vertices  such that     contains  
The leaves are vertices with no children

A rooted plane tree or planted tree is a rooted tree with a left-to-right ordering specified for 
the children of each vertex

(draw)

Though all such trees are important mathematically, in applications binary trees are often most 
significant.

Definition:
A binary tree is a rooted plane tree where each vertex has at most two children (denoted left 
child or right child)
The subtrees rooted at the children of the root are the left subtree and right subtree

A k-ary tree has at most  children from each vertex

Application - Data Compression:
Suppose I am sending you a message, built out of symbols from some alphabet  
To transmit it to you, I need to convert it into binary.

I want to send the message using as few bits as possible (compression). 
But, I need you to be able to read the message, so whatever I do to it must be reversible

Strategy:
For each symbol in  , replace it with a binary string (its code).
If the symbol appears a lot in the message, make the code short. If the symbol appears 
infrequently, the code can be longer.
Send a table listing these conversions along with the message. (the message should be 
much bigger than the table)

For this strategy to be coherent, the recipient needs to be able to break up a long binary string 
into segments each corresponding to individual symbols. Since the segments may be different 
lengths, this can be tricky.

Idea:
If no code for a symbol is the initial part of another symbol's code, we'll be able to undo 
the compression.
This gives us a prefix-free condition.

Equivalently, this lets us draw the codes as leaves of a rooted binary plane tree
(draw an example)

Algorithm: (Huffman Coding 1952)
Input: Weights (frequencies or probabilities)        of each symbol
Output: Prefix-free codes (in the form a binary tree with  leaves)
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Output: Prefix-free codes (in the form a binary tree with  leaves)

View each weight as a vertex.
If    , we're done
If    , pick the two smallest weights and make them both children of a single vertex. 

Delete them from the list of weights and place their sum in the list of weights.

Theorem:
Given a probability distribution     on  items, Huffman's algorithm produces the prefix-free 
code with minimum expected length.

Proof: (maybe don't prove this?)

Note:
It is not always the case that prefix-free codes give the best possible compression of a 
message. Sometimes, different compression schemes are better.
There's some really fascinating mathematics involved in this subject.
One can look to Shannon 1948 for the really interesting result

Theorem:
Given a probability distribution     on  items, any code for those items has expected 
average length at least

         log   

 

 

This value is called the entropy.
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In this section, we'll be translating a couple of common types of questions into graph theoretic terms. 
This will lead us to some interesting properties of graphs.

Definition:
A matching  in a graph  is a set of non-loop edges with no shared endpoints. The vertices 
incident to the edges of a matching are said to be saturated by  . Other vertices are unsaturated. 
A perfect matching is a matching for which all vertices are saturated.

(draw an example)

Question:
What can we say about the incidence matrix of a matching?

Question:
How many perfect matching are there in a complete graph on   vertices?

                   

Note:
Not all graphs have perfect matchings!

In general, we'll be interested in asking how large of a matching we can find for a given graph

Definition:
A maximal matching in a graph is a matching that cannot be enlarged by adding an edge.
A maximum matching is a matching with the largest size among all matchings in a graph.

Note:
A maximum matching is maximal.
A maximal matching need not be a maximum.

(The middle edge in   is a maximal matching, but not a maximum)

This example illustrates a bit of how we may enlarge matchings.

Definition:
An  -alternating path for a matching  is a path that alternates between edges in  and 
edges not in  
An  -alternating path whose endpoints are unsatured by  is an  -augmenting path

Claim:
If we have an  -augmenting path, then  is not maximal.

Definition:
Given graphs  and  , the symmetric difference is the subgraph of    with edge set 
         

Section 3.1 - Matchings and Covers
Saturday, March 11, 2023 2:59 AM

   Graph Theory Page 50    



(draw 2 matchings on the same graph and find the symmetric difference of them. Note that the 
symmetric difference consists of disjoint paths and even cycles)

Lemma:
Every component of the symmetric difference of two matchings is a path or an even cycle.

Proof:
Let       . No vertex in  has degree larger than 2, so  is a disjoint union of paths and 
cycles.
Cycles must alternate between elements of the two matchings, so even length.

Theorem: (Berge 1957)
A matching  in a graph  is a maximum matching in  if and only if  has no  -augmenting 
path.

Proof:
We already know one direction.
Suppose  is not a maximum matching, so   is a strictly larger matching. Consider   
    

Each cycle in  has the same number of elements from each matching, so there must be 
a path. This is  -augmenting.

Broad Setting:
Suppose you are running a hiring committee to hire several new staff members in an 
organization.  is the set of open jobs.  is the set of applicants. Each applicant is well-suited 
to some subset of the jobs. As the hirer, you'd like each job opening to be filled by a single, 
distinct, suitable applicant.

The setup indicates a "suitability" graph which is    -bipartite and indicates that we wish to 
find a matching that saturates  

(Alas, as the hirer, we don't really care whether or not it saturates  - some candidates 
may need to apply elsewhere.)

Note:
In this setting, any such matching is necessarily a maximum.

Theorem: (Hall's Theorem - P. Hall 1935)
An    -bigraph  has a matching that saturates  if and only if           for all    
(Hall's Condition)

Proof:
This is clearly necessary, for any such matching must only touch neighbors of elements of  

Let's suppose that  is a maximum matching in  and  does not saturate  
Want to show that there is a set  such that           

Fix    unsaturated by  . 
Let  be the set of vertices reachable from  by  -alternating paths. 

 the subset of  unsaturated by  
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 the subset of  unsaturated by  
     

Claim that  matches  to      , so that          , and that       

Corollary:
For    , every  -regular bipartite graph has a perfect matching.

Proof:
If  is an    -bigraph, regularity implies        . Thus any matching satisfying Hall's 
condition is a perfect matching.

Note:
This is a pretty special case where we know about perfect matchings. Can we get at maximum 
matchings more easily?

Getting a lower bound on the size of a maximum matching is easy - just find a matching. 
Getting an upper bound is quite hard!
Likewise, if I give you a matching, you likely don't want to find out if it is maximal by looking 
for an  -augmenting path.
We need a better way of reasoning about such things.

Definition:
A vertex cover of a graph  is a set       that contains at least one endpoint of every edge. 
Vertices in  are said to cover     

Idea:
Suppose I give you a vertex cover of a graph and a matching of a graph.

Each edge in the matching has two distinct endpoints, at least one of which is in the 
vertex cover.
Hence, the cardinality of the vertex cover is at least that of the matching

-- every vertex cover is at least as large as every matching of a graph

(Think about street crossings as edges and the roads they are on as vertices. How many people are 
needed to monitor all of the street crossings?)

Theorem: (Koenig 1931, Egervary 1931)
If  is bipartite, then the maximum size of a matching in  equals the minimum size of a 
vertex cover of  

Proof:
 an    -bigraph
Let  be a minimum size vertex cover of  . We already know every matching is at most the 
size of  .

Let      and      

Consider subgraphs induced by        and        , call them  and   
Claim:

 has a matching that saturates  into    and   a matching that saturates  into   
 

If we have that, since      , we have a matching of size    
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Proof of Claim:
 has no edges from    to    (one of the endpoints points would have to be 
included in  )
Let    and consider          

If            , then remove  from  and put      in instead.  is now strictly 

smaller, a contradiction.
Hence Hall's condition is satisfied.

The equivalent works for   

(first lecture ended here)
Note:

Observe that for bipartite graphs, this turns the problem of finding a maximum matching into 
an equivalent question about minimizing vertex covers. Finding a lower bound of size is easy 
(just find a matching). Finding an upper bound of size is easy (just find a vertex cover). This 
makes it a great optimization problem.

This kind of setup in an optimization problem is called a min-max relation.

In some generality, we may have a maximazation problem M and a minimization problem N
on the same class of objects (like graphs) such that for every candidate solution  to M and 
every candidate solution  to N the value of  is at most that of  

Such problems are often called dual optimization problems

If we have dual problems, finding candidate solutions of equal size guarantees that both are 
optimal, and gives a min-max relation.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Definition:
The independence number of a graph is the maximum size of an independent set of vertices.

Definition:
An edge cover of  is a set  of edges such that every vertex of  is incident to some edge of  
Vertices of  are said to be covered by the edges of  

Note:
A perfect matching is an edge cover with       edges
Any matching is an edge cover of the subgraph of saturated vertices

This problem is ultimately quite related to the previous, so we'll introduce some terminology for 
convenience.
Definition:

The maximum size of an independent set is     
The maximum size of a matching is      
The minimum size of a vertex cover is     
The minimum size of an edge cover is      

These quantities tend to be fairly interrelated.
Note:

Koenig-Egervary theorem says           for bipartite graphs.

We'll want to show that           for bipartite graphs without isolated vertices

Notation:
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Notation:
For a subset of     , we'll use an overline to indicate the complement within     

Lemma:

In a graph  ,       is an independent set if and only if  
  

is a vertex cover.
In particular,               

Proof:

Let  be an independent set. Then every edge has at least one-endpoint on a vertex in  
  

. Then 

 
  

is a vertex cover.
The logic works in both directions.

Taking a maximum independent set gives the desired result.

Theorem: (Gallai 1959)
If  is a graph without isolated vertices, then                 

Proof:
Let  be a maximum matching. For each unsaturated vertex, add one edge to  to obtain an 
edge cover  
The number of vertices covered by  is 2 for each edge in  , and 1 for each edge not in  , so 
                

Thus,          
Hence,                 

Let  be a minimum edge cover. For any edge    , if both endpoints are incident on other 
edges in  then    by minimality
Hence, any component formed by edges in  has radius 1 (only one vertex can have degree 
bigger than 1), so is a star
Let  be the number of components. Each non-central vertex in a star is a leaf, so        
Choose one edge from each component to form a matching  with          
Hence                 

Corollary: (Koenig 1916)
If  is a bipartite graph with no isolated vertices, then           

Proof:
Use the previous two results and the Koenig-Egervary relation
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Problem:
How do we actually find a maximum matching in a bipartite graph?

Idea: Look for augmenting paths

Algorithm: (Augmenting Path Algorithm)
Input: An    -bigraph  , a matching  in  , the set  of  -unsaturated vertices in  

Idea: Explore all  -alternating paths from  . For each vertex we reach, record how we got 
there.

   and    the explored sets

First, set    and    
Loop:

If all vertices in  are marked, stop.        is a minimum cover,  is a 
maximum matching

Select an unmarked    . Consider all       with     
If  is unsaturated, we have an augmenting path.
If  is saturated, there exists    such that     

Add  to  and  to  
After all such  are explored, mark  

Theorem:
Repeatedly applying the Augmenting Path algorithm to a bipartite graph produces a matching 
and a vertex cover of equal size.

Proof:
If algorithm produces an augmenting path, we can use it to produce a strictly larger matching. 
This can only happen finitely many times.

If algorithm outputs a set          and a matching  , we need to show that the former 
is a vertex cover, the latter is a matching, and they have equal size.  is certainly a matching.

To show vertex cover, we need to argue that no edge connects    and  
If one did, it would connect some    to some      . If  is unsaturated, 
augmenting path, if saturated the algorithm should have explored it before marking  

Any point in  is saturated, because the algorithm would have found an augmenting path 
otherwise. Necessarily    , since    at the beginning and  grows, so    are all saturated 
as well. Edges in  cannot go between    and  (such points in  would be added to  ), so 

                 

No matching is strictly larger than a vertex cover, so they must be equal.

Note:
Define big  notation

Definition:
The running time of an algorithm is the max number of computational steps used 
expressed as a function of the size of the input.
- max over all inputs of that size

Section 3.2 - Algorithms and Applications
Wednesday, March 15, 2023 11:10 PM
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- max over all inputs of that size

Definition:
A good algorithm is one with polynomial running time.

Remark:

If  is an    -bigraph with       and       , then since       
 

 
 , we need only run 

the algorithm above at most    times. 
Each time we run the algorithm, it examines each vertex at most once, then marks it. Thus we 
traverse each edge at most once.
That means the number of edge explorations we have to do to find a max matching is

     
There are better algorithms.

~~~~~~~~~~~~~~~~~~~~~~~~~~~
Problem:

What if our graph is weighted, and we're interested in finding a matching of maximum total 
weight?

(It suffices to consider     by adding vertices and edges of weight 0, and it suffices to 
consider non-negative weights since we may simply set negative weights to 0 then solve the 
problem then delete edges with 0 weight to solve the original.)

On     with non-neg weights, some maximum weighted matching is perfect, so we need only 

find a maximum perfect matching.

Much as with the standard maximum matching problem, we can dualize this one, which will 
help.

Side Note:
If we can solve this problem, we can also solve the problem of finding a perfect matching of 
minimum weight. To do so, just pick  really really large, and compute  minus the weights, 
then maximize.

(lecture ended here)
Example:

A farmer owns  farms ( ) and  processing plants    
Each plant is capable of processing the amount of crops grown on one farm.
The profit from sending the crops from farm   to plant   is    

We have an    -bigraph with weights    

Maximizing profit is a weighted maximum matching problem.

The government thinks too much corn is being produced, so offers payments to farmers 
in exchange for not growing and processing corn.
Government will pay   in exchange for farmer not using farm   and will pay   in 

exchange for farmer not using plant   

If          , then the farmer is incentivized to use the edge to make more money

If          , then the farmer is incentivized to take the government payout.

The government thus wants to make sure that          for all    

But, to do so for the least cost, the government wants to minimize    
 
     

Definition:
A transversal of an  -by- matrix consists of  positions in the matrix, one in each row and 
each column
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each column
Finding a transversal with maximum sum is the Assignment Problem
This is just a matrix way of writing the maximum weighted matching problem for non-
negative weights
Maximizing the total weight     is the goal

A weighted cover is a choice of labels        and       such that          for all    . 

The cost       of a cover is        

The minimum weighted cover problem is finding a cover with minimum cost.

Lemma: (Duality of weighted matching and weighted cover problems)
For a perfect matching  and weighted cover      in a weighted bipartite graph  

           
Moreover,            if and only if  consists of edges     such that          

In this case, both  and      are optimal

Proof:
 saturates all vertices, so for edge each       , we have          . Each vertex is 

accounted for once, so adding these up gives the result.

Equality is only obtained if each of these inequalities is an equality.

Duality gives optimality.

Definition:
The equality subgraph     for a weighted cover      is the spanning subgraph of     whose 
edges are the pairs     such that           

In the cover, the excess for    is           

Idea:
We want to find a cover      such that     has a perfect matching. If     has a perfect 
matching, then so does     . The weight of this matching is    

 
     and it must thus be 

optimal

If     has no perfect matching, find a maximum matching  in     and a minimum vertex 

cover  
Set      and      
Matching has    edges from  to    and    edges from  to    

Change      to preserve weight equality on all edges in  , but to cause zero excess on 
an edge from    to    
We now have a strictly larger maximum on this new     

To do this change:
Call  the min excess of all edges from    to    
For all       , reduce   by  
For all     , increase   by  

(draw the picture from the book)

Algorithm: (Hungarian Algorithm - Kuhn 1955 and Munkres 1957)
Input: A matrix of weights on the edges of     with bipartition    
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Let      be a cover with     spanning (one can take     ax    and     )

Loop:
Find a maximum matching  in     

If  is perfect, stop.  is a maximum weight matching

Otherwise, let  be a minimum vertex cover in     , let      and      

Let    in                         

Decrease   by  for all       . Increase   by  for     

Use these new values as a new cover that has less cost.

(You can think of this entire algorithm using matrices, by writing the matrix of excesses. The 
equality subgraph corresponds to entries in the matrix which are equal to 0.)

(Consider doing an example, just write out an arbitrary 5x5 or 4x4 matrix of non-negative weights, 
it should work out.)

Theorem:
The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.

Proof:
If the algorithm terminates, we're done.

Denote      the current cover and suppose we have no perfect matching in     yet. Denote 

      ) the modified cover. Necessarily    , so              
For any edges between  and    , no excess has changed.
Likewise for edges between    and  
For edges between    and    ,   

    
         , so by the choice of  the weight is 

still covered
For edges between  and    

    
         , so the weight is still covered

Thus        is still a cover.

We need only argue now that the algorithm terminates in finite time. (This is actually fairly 
tricky)

Easier Case with a more Straightforward Argument:
If I can assume the weights are rational, then WLOG I can assume they're integers by 
clearing denominators.
Then    in every step, and the cost of the cover is reduced in every step by an integer 
amount.
The cost started out finite, and is bounded below by the weight of a matching.
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The cost started out finite, and is bounded below by the weight of a matching.
Thus, the algorithm terminates after finitely many steps.

Harder Case:
If the weights are real numbers, we need to work harder.
The issue is that the matching doesn't have to strictly increase in size every iteration of 
the loop
Instead, what we have to show is that if we keep running the loop, it eventually
increases

Claim:
If we run the loop of the Hungarian algorithm  times, the matching will increase 
in size at least once.

Proof of Claim:
Let  be a maximum matching at some step with corresponding minimum vertex 
cover  

The augmenting path algorithm gives us this cover by exploring  -
alternating paths from  the set of unsaturated vertices

Let  denote the reachable set in  and  the reachable set in  
The vertex cover was    with      

If we apply an iteration of the Hungarian algorithm loop using this vertex cover, 
equality is maintained for all edges in  
Edges from  to  vanish from     , but no  -alternating paths traversed those 

edges so that changes nothing
A new edge from  to    appears.

If it creates an  -augmenting path, we have a strictly larger matching.
If not,  is unchanged but  is now larger (we can reach the new point 
through the new edge)

 can only increment in size at most  times, so eventually we will be 
forced to hit the other case

(Optional: Decide whether to discuss any of this which follows)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Problem:

Stable matchings

Suppose  applicants are applying for  job positions. 

Each applicant has an ordered preference list of the positions they want
Each job position has an ordered ranking of the best candidates for that position.

Suppose I gave you a matching
Specify an applicant  and a position  , supposing they aren't matched
Suppose  prefers  over their current match and  prefers  over their current match
Then  and  might renege on the agreement and match each other.

We say      is an unstable pair

Definition:
A perfect matching is a stable matching if it has no unstable unmatched pair.
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Does a stable matching necessarily exist, and can we find it?

Algorithm: (Gale-Shapley Proposal Algorithm)
(this is actually a great paper, called "College admissions and the stability of marriage")

Input: Preference rankings for each applicant and for each job position.

Loop:
Each applicant selects the position highest on their preference list who has not rejected 
them.
If all positions get one selecting applicant, use that as the matching.

Else, for each position with more than one selecting applicant
Reject all of them except the one highest on the position's preference ranking

Everyone says "maybe" to all remaining selected applicants.

Theorem: (Gale-Shapley 1962)
The proposal algorithm produces a stable matching.

Proof:
The algorithm definitely produces a matching if it terminates. It must terminate, since the 
total length of possible unrejected selections decreases every loop.

Suppose the result is not stable, so      is an unstable pair for some    with    and    
During the algorithm,  first selected their favorite position, doing so repeatedly until that 
job received a better applicant and rejected  

In particular, over iterations, applicants selects nonincreasing quality matches 
every round

positions receive nondecreasing quality offers every 
round

Since  ended with a worse match than  , they must have selected  during the 
algorithm
Since  ended with a worse match than  , they must have never received an application 
from  
Contradiction. 
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We will be pursuing the analogy of thinking of graphs as networks. We'd like to ask how robust we can 
make these networks.

In a network, loops are pretty irrelevant, since they don't affect connectivity at all.
We will thus universally assume that graphs have no loops

Definition:
A separating set or vertex cut of a graph  is a set       such that    has more than one 
component.
The connectivity of  is     , the minimum size of a vertex set  such that    is disconnected 
or has only one vertex
A graph is  -connected if its connectivity is at least  

Note:
  has connectivity    
For any graph not containing   , having connectivity     means there is a separating set of 
size     and no smaller such sets.

Question:
What is the connectivity of     ?

Claim:
The  -dimensional hypercube   has connectivity  

Proof:
Take the neighbors of a fixed vertex in   to get        

We prove the other direction by induction.
  and   are complete graphs

Note that   can be written as two copies     of     linked by a matching between 
corresponding vertices
Let  be a vertex cut of   

Suppose first that    and     are both connected.
Then  contains one endpoint of each matched pair, so           

Then WLOG we may assume    is disconnected, so          by Inductive 
hypothesis

But S      
Hence      , so        

Note:
For any vertex       ,     is a vertex cut.

Thus          

We've actually discussed how many edges a graph needs to have in order to have       , 

with a lower bound of  
  

 
   edges - achieved by the hypercubes with     ( vertices)

Hence we have a lower bound on the number of edges needed for a graph on  vertices to 

Section 4.1 - Cuts and Connectivity
Monday, March 20, 2023 1:02 AM
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Hence we have a lower bound on the number of edges needed for a graph on  vertices to 
have       
We'll show that this is sharp if    

Example: (Harary Graphs)
Fix      , we define a graph     

Place  vertices around a circle at equally spaced points.

If  is even, make each vertex adjacent to the nearest 
 

 
 vertices in each direction around the 

circle

If  is odd and  is even, make each vertex adjacent to the nearest 
   

 
   vertices in each 

direction, and adjacent to the opposite vertex

If  and  are both odd, index vertices by integers mod  . Take       and add the edges 

    
     

 
    for     

   

 
   

(draw)

Theorem: (Harary 1962) 

         , so the minimum number of edges in a  -connected graph on  vertices is  
  

 
   

Proof:
(The case where     is even)
Certainly          , so we need only show          

Let       with      
Fix           
There is a clockwise    -path and a counterclockwise    -path along the circle, let the 
interior points of those paths be  and  

By Pigeonhole, either    or    contains fewer than 
 

 
 vertices

Each vertex is connected to the next 
 

 
 vertices in each direction, so there's still a 

    path in that direction

Note:
Going for a direct proof of       requires either

Consider a vertex cut  and show      
Consider a set  with      and show    is connected

Indirect proofs are usually by contradiction.

There is some art to knowing which will be easier to figure out and which will be easier to 
write up for any given example

We now know that there is a required number of edges for a graph to even possibly be  -connected. 
Is there a number of edges that would force it? (This is a question I'll intentionally leave open)
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Is there a number of edges that would force it? (This is a question I'll intentionally leave open)
(Note that multiple edges wouldn't really affect anything, so one need consider simple graphs only.)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~
Definition:

A disconnecting set of edges is a set       such that    has more than one component.
A graph is  -edge-connected if every disconnecting set has at least  edges.
The edge-connectivity of  is      , the minimum size of a disconnecting set.

Definition:
Given         , we write      as the set of edges with one endpoint in  and the other 
endpoint in  

An edge cut is an edge set of the form           

(draw a picture)

Note:
Every edge cut is a disconnecting set. The opposite is false.

Every minimal disconnecting set is an edge cut.

Theorem: (Whitney 1932)
If  is a simple graph, then                

Proof:
Edges incident to any given vertex form a disconnecting set, so           

Note that            (duh)
Take a minimal edge cut           . If every vertex in  is adjacent to every vertex in its 
complement, then this edge cut is bigger than       

Else, fix    and    
  

nonadjacent. Let  be set of neighbors of  in  
  

and vertices in      

adjacent to something in  
  

 is definitely a separating set, since all    -paths pass through  

Pick all edges from  to    
  

and one edge for each point in    

This is a subset of     
  
 , so

           
  
      

(lecture ended here)
Note:

If          , then necessarily           
This includes complete graphs, bicliques, hypercubes, and Harary graphs

There is a rich subject exploring relationships between these topics. Flexibility is an interesting 
question.
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Theorem:
If  is a 3-regular graph, then           

Proof:
Take  a minimum vertex cut and      two components of    
Since  is minimal, each    has at least one neighbor in   and at least one in   

Cannot have 2 of each.
For each    , delete the edge from  to whichever of the sets  has only one neighbor in.

If  has exactly one neighbor in each set, (draw picture), then there's a     adjacent to  [a 
sort of ladder picture]. Break the two edges on the same side.

This breaks all paths from   to   and deletes exactly one edge for each    , so      
     

What if I have a graph where           . Then edge cuts are pretty small compared to vertex 
degrees, so we aren't just isolating vertices. Can we express how big the components we're cutting 
off are?

Proposition:

If       , then      
  
          

             

Proof:
Edges in     are counted twice in the sum. Subtract them out.

Corollary:

If  is a simple graph and      
  
       for some nonempty proper subset  of     , then 

        

Proof:
We have             

             

Use:
         
                    

Resulting inequality requires      , (otherwise    )

We may often find ourselves breaking graphs into many smaller pieces. Removing many edges may 
give large edge cuts containing smaller edge cuts.

Definition:
A bond is a minimal nonempty edge cut

Proposition:
If  is connected, then an edge cut  is a bond if and only if    has exactly two components.

Proof:
If more than 2 components, pick one and just disconnect it.

If       
  
 is an edge cut with    having exactly two components, take a strict subset     

    contains both components of    , but must contain an edge between  and  
  

So it is connected.
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~

We know how to break a graph into components. However, when thinking about robustness, we 
might like to break connected graphs into pieces such that each piece is "very connected" with more 
tenuous links existing between pieces.

Definition:
A block of a graph  is a maximal connected subgraph of  that has no cut-vertex. If  itself is 
connected and has no cut-vertex,  is a block.

(draw a picture)

Question:
Suppose  is a tree. What are the blocks of  ?

Note:
Blocks of a loopless graph consist of

isolated vertices
cut-edges
maximal 2-connected subgraphs

Note:
Blocks in a graph form a decomposition of a graph. This can have really great properties, not 
unlike strong components of a digraph.

Proposition:
Two blocks in a graph have at most one vertex in common.

Proof:
Proof by contradiction, let   ,   have two vertices in common. There can be no cut-vertex 
between them (paths can go through either)

Definition:
The block-cutpoint graph of a graph  is a bipartite graph  in which one partite set consists 
of cut-vertices of  , and the other partite set has one vertex   for each block   of  
Include    as an edge of  iff     

(draw a picture for a connected graph  )

Question:
What does this graph look like when  is connected? 

Finding blocks in a graph algorithmically may be done using depth first search. (It may be worth 
briefly talking about the difference between depth first search and breadth first search.

(use the picture from the book to talk about exploring graphs by DFS [and maybe BFS], and growing 
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(use the picture from the book to talk about exploring graphs by DFS [and maybe BFS], and growing 
trees by doing so)

When discovering a new vertex  from an old vertex  , include   

Lemma:
If  is a spanning tree of a connected graph  grown by DFS from  , then every edge of  not 
in  consists of two vertices    such that  lies on the    -path in  

Proof:
Let        , with  encountered before  
Since   is an edge, we can't have finished with  before  is added to  

Thus  appears in the subtree rooted at  , so the path from  to  passes through  

Algorithm: (Finding the Blocks of a graph)
Input: Connected graph  
Idea: Build a DFS tree  , discard portions of  as blocks are found. Maintain an "active" vertex

Fix a root       , make  ACTIVE, set      
Loop:

Let  denote the current ACTIVE vertex
If  has an unexplored edge   

If       add   to  , mark   explored, make  ACTIVE
If       , then  is ancestor of  , mark   explored

If  has no more unexplored incident edges
If    

 the parent of  . Make  ACTIVE
If no vertex in the subtree   rooted at  has an explored edge to an ancestor 
above  

         is the vertex set of a block
Record that info, delete      from  

If    
End program

Do an example of this algorithm, but don't prove that it works.
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Intuitively, being "very connected" means that there should be a lot of different paths that go between 
any two points.

If a network is to be fault tolerant, it should be at least 2-connected. We'll explore this case first.

Definition:
Two    -paths are internally disjoint if they have no common internal vertices.

Theorem: (Whitney 1932)
If  has at least three vertices,  is 2-connected if and only if for each pair         there exist 
internally disjoint    -paths in  .

Proof:
(<=) Deletion of any point cannot disconnect any pair of other points, so this is immediate.
(=>)
Induction on       

Base case - remove edge between  and  , since     the resulting graph is still 
connected.
Let         

Pick the shortest    -path, let  be last point on it before  
By induction hypothesis, two paths to  from  . If one contains  , we're done, by 
looking at the formed cycle.
Otherwise, may assume neither contains  . Consider    , there's a    -path  . 
If this avoids previous paths, done.
Otherwise, let    be the last point intersecting previous paths (draw picture).
May come up with internally disjoint paths.

Here's a lemma which is useful for building up bigger  -connected graphs from smaller ones.

Lemma: (Expansion Lemma)
If  is  -connected and   is  with an added vertex  with at least  neighbors, then   is  -
connected.

Proof:
Let  be a separating set. If    , then      must separate  
If    , then either       or     co ponent containing   is disconnected, and      

separates  again

Theorem:
If  has at least three vertices, the following conditions are equivalent
A')  is 2-connected
A)  is connected and has no cut-vertex
B) For all         , there are internally disjoint    -paths
C) For all         , there is a cycle through  and  
D)       , and every pair of edges in  lies on a common cycle. Surely we could take    

Proof:
A' = A is a definition
A = B is the previous theorem
B = C is obvious

Section 4.2 -  -Connected Graphs
Monday, March 27, 2023 9:33 PM
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B = C is obvious
D => C

No edge is isolated, pick an edge incident on  and  
(A,B,C) => D

 is connected, so       certainly
Take edges   and   . Use expansion lemma to add a vertex incident only on    and 
another incident only on    
Take a cycle between these two new vertices. (draw)

Definition:
In a graph  , a subdivision of an edge   is the replacement of   with a path      between 
   through a new vertex  

Lemma:
If  is 2-connected, then   obtained by subdividing an edge of  is 2-connected.

Proof:
Condition on whether the subdivided edge is present.

As it turns out, combining the expansion lemma and the subdivision lemma actually lets us build up 
all possible 2-connected graphs (ears are just subdivided degree 2 vertices)

Definition:
An ear of a graph  is a path in  that is contained in a cycle and is maximal, in the sense that 
all internal vertices have degree 2.
An ear decomposition of  is a decomposition        such that   is a cycle and   for    
is an ear of        

(draw picture)

Theorem: (Whitney 1932)
A graph is 2-connected iff it has an ear decomposition. Moreover, every cycle in a 2-connected 
graph is the initial cycle in some ear decomposition.

Proof:
Graphs with ear decompositions are 2-connected by lemmas.

Let  be a cycle in 2-connected  , set     , and suppose   is a subgraph of  obtained by 
adding  ears successively to   

Suppose     
Take   an edge in     and   an edge in   . 
Form a cycle containing both, this cycle contains a path with endpoints the only 
intersections with   . This is an ear.
  Process  ust ter inate with     eventually

(Lecture ended here) 
(maybe skip the next sections up to and including x,y-cuts and just summarize them in words)

Question: What about edge connectivity? Can we characterize it in any simple ways?

Definition:
A closed ear in a graph  is a cycle  such that all vertices of  except one have degree 2 in  .
A closed ear decomposition of a graph  is a decomposition        such that   is a cycle and 
  is an ear or a closed ear in        

Theorem:
A graph is 2-edge-connected iff it has a closed ear decomposition, and every cycle in a 2-edge-
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A graph is 2-edge-connected iff it has a closed ear decomposition, and every cycle in a 2-edge-
connected graph is the initial cycle in some closed ear decomposition.

Proof:
Cut edges cannot be in any cycles, so 2-edge-connected iff every edge is in a cycle.
If  has a closed ear decomposition, this is immediately true.

If  is 2-edge-connected, let   be a cycle in  . 
Suppose     has a closed ear decomposition        , pick   not in   with        . 
It is contained in a cycle, which must eventually return to   , forming an ear or a closed ear.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Digraphs

Definition: 
Given a digraph  :

A separating set or vertex cut is a set       such that    is not strongly connected
The connectivity     and  -connectedness are defined in identical ways as the undirected 
case

For         , denote by      the set of edges with tails in  and heads in  

An edge cut is the set     
  
 for some    

 -edge-connectedness and edge-connectivity      are defined identically as the 
undirected case

Note:

The digraph case is fairly convenient in that     
  
 may now be thought of precisely as "the set 

of edges leaving  ". This leads to a nice fact
 is  -edge-connected if and only if for all nonempty proper vertex subsets  , there are 
at least  edges in  leaving  

The following proposition will give us some convenient intuition about strong digraphs, relating 
them to 2-connected undirected digraphs.

Proposition:
Adding a (directed) ear to a strong digraph produces a strong digraph.

Proof:
Pretty straightforward, show that every set has an edge departing it.

Question:
(draw an undirected graph which is not 2-edge-connected)
If this is a road network and all of the roads were suddenly made one-way, would you be able 
to go from any point in this graph to any other point?

Theorem: (Robbins 1939)
A graph has a strong orientation if and only if it is 2-edge-connected.

Proof:
Obviously connectedness is necessary, and the absence of cut edges is necessary

Take  2-edge-connected. Take a closed ear decomposition. Arrange the initial cycle 
cyclically, and then as each ear is added, make it a consistent direction. The orientation will 
remain strong.
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This theorem can actually be generalized pretty substantially.

Theorem: (see Frank 1993)
A graph  has a  -edge-connected orientation if and only if it is   -edge-connected.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~
 -Connectedness

Can we come up with an easier equivalent condition for being  -connected?

We'll first formulate some 'local' properties which are easier to think about.

Definition:
Take         . A set             is an    -separator or an    -cut if    has no    -
path.
Let       be the minimum size of an    -cut
Let       be the maximum size of a set of pairwise internally disjoint    -paths
For         an    -path is a path with first vertex in  and last vertex in  

Note:
An    -cut must contain an internal vertex of each    -path, so              

(this gives a duality relationship to these optimization problems)

(draw an example and compute some of these things)

Theorem: (Menger 1927) [Same guy as the sponge]
If    are vertices of a graph  and        , then the minimum size of an    -cut equals the 
maximum number of pairwise internally disjoint    -paths.

Proof:
We already have one direction of the equality. Need to show the other direction.

We work by induction on     . If       ,     so the graph is trivial
Let          , want to find  disjoint paths

    and     are both    -cuts, so no minimum    -cut properly contains them.
Case 1:

 has a minimum    -cut  which is not     or     

Combine    -paths and    -paths
Let    vertices on    -paths

   vertices on    -paths
WTS        , certainly        

Take          , there exists an    -path containing  and a    -path 
containing  
Traverse pieces of them to avoid  with an    -path, this is impossible

Similarly, any         is not in   by same argument, 

and any         is not in   

Take induced graph on   , add vertex   adjacent to all points in  to get graph   

Take induced graph on   , add vertex   adjacent to all points in  to get graph   

Both   and   are smaller than  so there exist  internally disjoint     -paths in 
  and     -paths in   

For each point in  , a single such path of each kind goes through them. Delete      
and merge to get    -paths
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and merge to get    -paths

Case 2:
Every minimum    -cut is     or     
If  has a vertex  which is not    nor in     or     then            , so 

inductive hypothesis gives desired paths.
If  has a vertex            , then  is in every    -cut, so              

and inductive hypothesis gives    internally disjoint paths. Include      as the 
last path.

Thus, may now assume     and     partition           

Take   a bigraph with bipartition     and     and edges            

All    -paths cross from     to     , and vertex cuts break all paths, so    -cuts 
in  are vertex covers in   , so        
By Koenig-Egervary Theorem,   has matching of size  
Combining matched edges with edges to    , we get desired paths.

This statement is inherently about  -connectivity. To get a similar statement about  -edge-
connectivity, we translate our graph somewhat.

Definition: (This is discussed explicitly on homework)
The line graph of a graph  ,     is the graph with             and           if     

    are incident on a common vertex (or for digraphs, head of  is tail of  )

Notation:
       is the maximum size of a set of pairwise-edge-disjoint    -paths
       the minimum number of edges whose deletion makes  unreachable from  

(Elias-Feinstein-Shannon 1956 and Ford-Fulkerson 1956)
               (does not matter if multigraph or if        )

Theorem:
If    are distinct vertices of a graph or digraph  , then                

Proof:
Add new vertices    and edges   ,   (draw)
Does not change        or        

Set of edges disconnects    in  iff corresponding vertices of      form an      -cut
Edge disjoint    -paths in  iff internally disjoint      -paths in      
   , so      are not adjacent in      
By Menger's Theorem

  
                                     

      

(Lecture ended here)

Global version of  -connected statement is also often called Menger's theorem. For edges and for 
digraphs first appeared in Ford-Fulkerson 1956.

Lemma:
Deletion of an edge reduces connectivity by at most 1

Proof:

Every separating set of  separates     , so             

If equality does not hold, then     has a separating set  which does not separate  
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If equality does not hold, then     has a separating set  which does not separate  
      has some components, call two    with    and    
  is only edge connecting these components.
If      ,      separates  , so               . Same if      

Otherwise           . Since         ,            [only happens if  is complete]

Theorem:
Connectivity of  is the max  such that         for all         

Edge-connectivity of  is the max  such that          for all         

Both statements are true for graphs and digraphs.

Proof:
       in

        
       

So edge connectivity is immediate by previous theorem

For connectivity, we still have       in              

But we only know that              if        

If        ,   is an    -path, so deletion of   reduces       by 1
By previous lemma and Menger's theorem

                                                

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Questions similar to that in Menger's Theorem come up in a variety of different contexts. An 
important example is the Fan Lemma. (Not the same Dirac)

Definition:
Given a vertex  and a set  of vertices an    -fan is a set of paths from  to  such that any 
two of them only share the vertex  in common

Theorem: (Fan Lemma, Dirac 1960)
A graph is  -connected iff it has at least    vertices and for all       and  with      
it has an    -fan of size  

Proof:
To see necessary, add a new vertex adjacent to all of  then use Menger's theorem.
To see sufficient, suppose  satisfies fan condition. 

Pick       and           . By fan condition,       (each path hits a 
neighbor)
Take         and       .      , extend    -paths with edges to  . This gives  
   -paths.

We can generalize this fan lemma a LOT. A common one takes    disjoint sets and integer-valued 
functions on    each summing to  , and finds  pairwise internally disjoint    -paths with the 
number ending at each point equal to the value of those functions.

A slightly less convoluted extension is below. [This may not be worth doing]

Theorem: (Dirac 1960)
If  is  -connected with    and  is a set of  -vertices in  , then  has a cycle including  in 
its vertex set.

Proof:
Induction on  . The    case is our characterization of 2-connectedness.

For larger    , fix    

   Graph Theory Page 72    



For larger    , fix    
Take    .      all lies on a cycle  . If         we must have an    -fan of size 
   . Two paths in this fan going to adjacent vertices in  can be used to enlarge  

Now assume       .
 has an       -fan of size  
Claim:

There exist two paths in this fan that form a detour from  that includes  but 
keeps all of      in  

Let          the points of      in the order they appear in  , let   be the 
portion of     starting at   up to but not including     

         partition  into     sets, so by Pigeonhole two paths in the fan go to 
the same set. Take these as the detour.

Question:
Why is Menger's theorem helpful? What do all of these clever little arguments actually help us 
with?

Idea:
If you want to understand some problem, try to view the objects you want to study as 
paths in some graph of digraph, by cleverly defining a graph
Then use Menger's theorem to get disjoint paths, and translate these back into your 
desired context.

Example:
Given sets          with union  
A system of distinct representatives (SDR) is a set of distinct elements        such that 
     

A sufficient and necessary condition is     
 
        for all      

(Does this look familiar?)
This problem is just a rephrasing of Hall's matching theorem, and is actually an 
equivalent formulation of Menger's Theorem

Here's a tougher variant.
Problem:

Let           and         be two families of sets. 
A common system of distinct representatives (CSDR) is a set of  elements that is an SDR for 
both  and  .

Theorem: (Ford-Fulkerson 1958)
Familes           and         have a CSDR if and only if

    

 

   

    

 

   

           

for each pair        

Proof:
Define a digraph  with vertices        and        and a vertex for each element in the 
sets, and two extra vertices    
Edges are

                     

                         

An    -path selects a member of the intersection of some   and   (one can only cross over at a 
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An    -path selects a member of the intersection of some   and   (one can only cross over at a 

common point
Claim:

There exists a CSDR iff there is a set of  pairwise internally disjoint    -paths

By Menger's theorem, there is a CSDR iff there is no    -cut of size less than  
Take             and let 

              

              

Claim:
 is an    -cut iff

   

 

   

    

 

   

  

(all points which are both in a set   and in a set   which are not already covered by  are in 

 )

Thus,

        

 

   

    

 

   

                 

This lower bound is always at least  (we can essentially choose  and  freely in varying  ) 
iff the main condition holds [so that most terms on the right side cancel]

   Graph Theory Page 74    



Imagine a situation where you have a network of pipes (or roads, or bus lines, or electrical lines, etc.) 
where valves allow flow in one direction, each pipe having a specified capacity per unit time.
Put a vertex at each junction and model each pipe as an edge, weighted by capacity. Assume there's no 
buildup at junctions, for simplicity.
Given locations    in the network, one might be interested in asking how much flow one can get 
between  and  

This is an incredibly broad category of problems, one can find more in Ford-Fulkerson 1962 or Ahuja-
Magnanti-Orlin 1993.

Definition:
A network is a digraph with a nonnegative capacity     on each edge  and a distinguished 
source vertex  and sink vertex  
Vertices are also called nodes
A flow  is a function assigning values to each edge  
Given a flow, write      for the total flow on edges leaving  and      for the total flow on 
edges entering  
A flow is feasible if it satisfies the capacity constraints

           
for each edge and the conservation constraints

           
for each node        

There are a lot of questions that can be asked about such things. We'll start by asking about max 
flows.

Definition:
The value       of a flow  is the net flow            into the sink
A maximum flow is a feasible flow of maximum value.

(draw an example of a flow on a digraph - pg 176 of the book is a good one to talk through [it has an 
augmenting path])
(explain why the zero flow is always feasible)

Definition:
When  is a feasible flow in a network  , an  -augmenting path is a source-to-sink path  in 
the underlying graph  such that for each       

if  follows  in the forward direction,          
if  follows  in the backward direction,       

If we have such a path, let               when  is forward on  and let          
when  is backward on  .
The tolerance of  is  in          

(explain why this allows increasing the flow using a drawing)

Lemma:
If  is an  -augmenting path with tolerance  , then changing flow by   on edges followed 
forward by  and by   on edges followed backwards by  produces a feasible flow   with 

                

Proof:

Section 4.3 - Network Flow Problems
Sunday, April 2, 2023 3:33 PM
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Proof:
By definition of tolerance,             for all edges, satisfying capacity constraints.
For conservation constraints, need only check points on  as only they've changed - but 
always in a way that cancels out (draw the four cases of directions of  around a node)

Net flow into the sink  increases by  

This means that if we want to find better flows, finding augmenting paths allows us to "redirect 
fluid" down pipes to improve our situation, iterating until we reach a maximum

Question:
Is there a quick(-ish) way to check that we are at a maximum?

Definition:
A source/sink cut      consists of the edges from a source set  to a sink set  where    
partition the set of nodes, with    and    
The capacity of the cut      written         is the total of the capacity of the edges in      

(recall for digraphs      are edges with tail in  and head in  )

Lemma:
If  is a set of nodes in a network, the net flow out of  is the sum of the net flows out of the 
nodes of  . In particular, if  is feasible and      is a source/sink cut, then the net flow out of  
and net flow into  equal       

Proof:
We want to show 

                          

 

   

This formula is somewhat immediate (edges within  cancel on the right)

Interpret this in the case    or    for a source/sink cut

Corollary: (Weak duality)
If  is a feasible flow and      is a source/sink cut, then                

Proof:
By lemma,

                        

Capacity constraints require               

Note:
Given capacities of a network, the question of finding a source/sink cut with minimum 
capacity defines the minimum cut problem
Again, we have a duality result, and in fact we will ultimately have equality of solutions

Algorithm: (Ford-Fulkerson labeling algorithm)
Input: Feasible flow  in a network
Output: An  -augmenting path or a cut with capacity       
Idea:

Find nodes reachable from  by paths with positive tolerance
Reaching  completes an  -augmenting path.
During search,   nodes labeled as "Reached" and    the "Searched" nodes

Set      and    
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Set      and    
Loop:

Choose      
For each exiting edge   with            and    

Add  to  
For each entering edge   with        and    

Add  to  
Label vertices in  as "reached", record  as the vertex reaching it
Add  to  and mark it "searched"

If sink  has been reached (put in  )
Trace the path reaching  to report an  -augmenting path
Terminate

If    

Return the cut     
  
 

Terminate

(draw a picture and run an example)

Theorem: (Max-flow Min-cut Theorem - Ford Fulkerson 1956)
In every network, the maximum value of a feasible flow equals the minimum capacity of a 
source/sink cut

Proof:
Zero flow is always feasible, to take it as start point.
Given a feasible flow, run Ford-Fulkerson algorithm.
If algorithm gives augmenting path, we may use it to increase flow value, then repeat 
algorithm.

If capacities are rational, min tolerance is    with  the lcm of denominators, so value 
increases by at least    each time and is bounded.

Eventually algorithm must return a cut with equal value

    
  
 is a source/sink cut since    and    

  

Labeling algorithm included no nodes of  
  

so no edge from  to  
  

has excess capacity 

and no edge from  
  

to  has nonzero flow
Thus               and        
Thus                

Question:
Wait, what gives? This proof assumes capacities are rational! What happens if I want a pipe 

with capacity  or   
   

??

This algorithm actually can break in such examples! It might infinitely loop - here's an 

example where things will break (take   
  

   
  

 
    ) 
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Should probably upload this to the course website, it explains the infinite loop: 
https://faculty.math.illinois.edu/~mlavrov/docs/412-spring-2018/infinite-loop.pdf

However, there is a way to modify the algorithm so that it will work for all real capacities
The idea is to find the shortest augmenting path (See Ahuja-Magnanti-Orlin 1993)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~
Especially for applications in pure mathematics, flows tend to have integer capacities and one ultimately 
wants solutions for which the flow on each edge is an integer.

Corollary: (Integrality Theorem)
If all capacities in a network are integers, then there is a maximum flow assigning integral flow to 
each edge
Furthermore, some maximum flow can be partitioned into flows of unit value along paths from 
source to sink

Proof:
The tolerance in each step of the algorithm is an integer, so it must output an integral flow

For this produced maximum flow:
for each internal node, produce a matching of units of entering flow to units of exiting flow

This produces a collection of    -paths and some cycles on the graph.
For each cycle, decrease flow on each edge in the cycle by 1 to remove the cycle without changing 
the value of the flow.

Note:
This theorem is really, really similar to Menger's theorem

Idea 1: (From Max-Flow Min-Cut to Menger)
When    are vertices in a digraph  , view  as a network with source  and sink  and capacity 1 
on all edges
Units of flow from  to  correspond to pairwise internally disjoint    -paths
A flow of value  thus has exactly  such paths

For any source/sink cut      , deleting these disconnects  and  
All capacities are 1, so the size of this set is         

Thus

  
        ax        in           

      

But      always, so equality.

Idea 2: (From Menger to Max-Flow Min-Cut)
Plan: Take an arbitrary network  with rational capacities, turn it into a digraph to apply 
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Plan: Take an arbitrary network  with rational capacities, turn it into a digraph to apply 
Menger's Theorem. 

WLOG clear denominators to get integer capacities.
For each edge, if the capacity is  split the edge into  directed edges with the same head and 
tail as the original edge. This gives a digraph  
By duality on the network,  ax        in         

Take        pairwise edge-disjoint    -paths in  , this corresponds to a flow of value        
on  , so

 ax               
Take  a set of        edges disconnecting  from  in  

If    , by minimality some    -path passes over  but no other edge in  
 must contain all "copies" of the edge  , otherwise we could just take a different one
(contains all or none of the copies of each edge)

Thus        is the sum of capacities on a set of edges that disconnects  from  
Let  be vertices reachable from  in    , this gives a source/sink cut with its 
complement.

       
  
         

Thus  in                

These two problems are equivalent! (And in fact are also equivalent to the maximum matching 
problem!)
The min-cut max-flow algorithm is probably the most computationally convenient algorithm we've 
discussed, though.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~
(There's a section on supply and demand models which is pretty interesting - see what you have 
time for)
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Definition:
A  -coloring of a graph  is a labeling         where      
The labels are colors, the vertices of one color form a color class
A  -coloring is proper if adjacent vertices have different labels
A graph is  -colorable if it has a proper  -coloring
The chromatic number     is the minimum  such that  is  -colorable

Recall: (from the very beginning of the class, almost)
 -colorable and  -partite have the same meaning

Question:
How do I color a graph that has loops?

Definition:
A graph is  -chromatic if       
A proper  -coloring of a  -chromatic graph is an optimal coloring
If            for every proper subgraph  of  , then  is color-critical or  -critical

Question:
What do 1-critical and 2-critical graphs look like?

Note:
3-critical graphs are odd cycles (by the classification of bipartite graphs)

Definition:
The clique number of a graph  is     the maximum sizee of a set of pairwise adjacent 
vertices in  

Proposition:

For every graph  ,          and      
    

    
   

Proof:
Points in clique need different colors. 
Color classes form independent sets.

Note:
In general,     may be strictly larger than     , a 5-cycle is a perfectly good example

Note:
For graphs  and  

        ax           
                

Definition:
The cartesian product of  and  is the graph    with vertex set          with      
adjacent to        iff either

    and         
    and         

Section 5.1 - Coloring of Graphs
Monday, April 10, 2023 4:54 PM

   Graph Theory Page 80    



Definition:
The  by  grid is the product      

(draw) (one can remember this box symbol by thinking about      

Proposition: (Vizing 1963, Aberth 1964) 
        ax            

Proof:
Since  and  are both contained as subgraphs, one has  immediately

Let    ax            
Let  be a proper     coloring of  and  a proper     -coloring of  

Define a coloring  on    by 
                      

Ideally, we'd like a good way to come up with bounds on the chromatic number of a graph
Naively,          , but we can do better

Algorithm: (Greedy Coloring)
The greedy coloring relative to a vertex ordering        of     iterates through the 
vertices, assigning each the label of the lowest color not equal to the color already assigned to 
a neighbor

Proposition:
           

Proof:
Each point has at most     neighbors, at worst only those many colors will already be 
claimed.

We can improve greedy coloring a bit by picking a good order for vertices.

Proposition: (Welsh-Powell 1967)
If  has degree sequence        then

        ax
 

 in        

Proof:
Order vertices in non-increasing order of degrees. Number of neighbors of   already colored 
is at most  in        

Picking the right order is the name of the game - every graph has a vertex ordering where the 
greedy coloring will produce an optimal coloring.
There are some graphs where we can come up with better colorings than this greedy coloring 
strategy might have us do without being very lucky about the order we've chosen.

Example:
Computers stores variables in memory locations called registers in order to do arithmetic
These are quickly accessible locations in memory, but there are relatively few of them. Ideally, 
we'd like to assign variables that are never used at the same time to the same register, 
because we'll never need both at once
For any variable, we could in principle record the first and last time we use it, calling the 
intervening interval active
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Make a graph whose vertices are the variables. Two vertices are adjacent if they are active at 
overlapping times.
Number of registers needed = chromatic number of the obtained graph

(draw a picture)

Definition:
An interval representation of a graph is a family of intervals assigned to the vertices such that 
the vertices are adjacent if and only if the corresponding intervals intersect.
A graph with such a representation is an interval graph

Proposition:
If  is an interval graph, then          

Proof:
Order vertices according to left endpoints of intervals, then greedy color.
Suppose  has label  

Then some    preceding points have intervals overlapping the start of the interval 
for  
These  vertices form a  -clique

Note:
If you computationally implement the greedy coloring algorithm on a "random" graph, it will 
probably use about twice the minimum needed # of colors.
It can be very very bad if you use it on trees.

Lemma:
If  is a  -critical graph, then         

Proof:
Let       
   is    -colorable
If          , then     does not use    many colors, so we can use one of these 
remaining on  

Theorem: (Szekeres-Wilf 1968)
If  is a graph, then         ax       

Proof:
Let       
If     is  -critical, then

                      ax
      

    

We can relate properties of colorings to those of orientations of a graph.

Example:
Every bipartite graph has an orientation with all edges going from partite set 1 to partite set 2

Longest path length is 1

Any orientation of an odd cycle must have two adjacent edges with the same orientation
Longest path length at least 2

Theorem: (Gallai-Roy-Vitaver Theorem (Gallai 1968) (Roy 1967) (Vitaver 1962))
If  is an orientation of  with longest path length     , then
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If  is an orientation of  with longest path length     , then
           

Moreover, there exists an orientation of  where this is an equality.

Proof:
Let  be an orientation, take   a maximal subdigraph containing no cycle (can always take   
spanning)
Color     by letting     be 1 + (length of longest path in   ending at  )

Let  a path in   starting at  . Any path in   ending at  cannot contain any other points in 
 - this would form a cycle

Thus  strictly increases along  
 uses colors  through        on     
For each edge        , either   or         or there is a path in one of those directions 
(maximality)

Thus          

Now, let  be an optimal coloring of  , we want to construct an orientation.
Define an orientation  by        iff          and        

No path in this orientation can be longer than #colors - 1

We had a bunch of bounds for colorability in the previous section. One of the simplest was      
      . We know this bound is an equality for complete graphs and odd cycles. 

Theorem: (Brook 1941)
If  is connected and is not complete or an odd cycle, then          

Proof:
Take  connected with       
We may take    (all smaller graphs are trivial or do not satisfy assumptions)

(Idea: Order the vertices in a clever way, then use greedy coloring)
Case 1:  is not  -regular

Take a vertex        with degree less than  
Grow a spanning tree of  from   , assign indices in decreasing order as they are 
reached

Every vertex has a higher ordered neighbor, so has at most    lower-indexed 
neighbors (we know  )

Greedy color

Case 2:  is  -regular, with some cut vertex  
   has multiple components, let   be one of them, with edges to  added back in
        , so previous method gives proper  -coloring of   
Do this for every component, permute colors if necessary so that they agree on the color 
for  

Case 3:  is  -regular and 2-connected
Suppose   has two neighbors      such that they are not adjacent and          is 
connected
Index spanning tree of          so that indices increase along paths to   , starting at 
index  

We now have order           

Each element in order has at most    lower-indexed neighbors, except last
But      are assigned same color, so we get a  -coloring
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Now we just need to argue that every 2-connected  -regular graph with    has such 
a choice of         

Take       
If         , take     ,   some vertex at distance 2 from  

(must exist otherwise everything connected to everything)
Take   a common neighbor

If         , let     
   can be divided into blocks, say a block is a leaf block if it only 
contains one cut-vertex of    (equivalently if it is a leaf in the block-
cutpoint graph, which is a tree)
 must have a neighbor in every such block, otherwise  would have a 
cut-vertex
There are at least two leaf blocks
Must be some neighbors      of  in different blocks which are 
nonadjacent 
(draw picture, this would probably help)

Since blocks have no cut-vertices            is connected
Since    ,  has a third neighbor so          is connected

There are a LOT of interesting variants of coloring problems that have uses in applications.
One could color edges, one could examine "generalized colorings", one can allow only certain 
colorings on each value ["list colorings"], one can discuss colorings of hypergraphs, and on and on
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Definition:
We say that a graph  is perfect if          for all induced subgraphs  of  

Our goal here is to demonstrate a way to produce a graph with a chromatic number     much larger 
than     

Definition:
If  is simple, Mycielski's construction produces a simple graph   containing  
Suppose               
Add vertices            and one additional vertex  

Add edges so that   is adjacent to all of       and let       

Example:
Apply this construction to   and then again to the resulting graph.  Observe what seems to 
happen to the chromatic number

Theorem: (Mycielski 1955)
From a  -chromatic triangle-free graph  , Mycielski's construction produces a    -
chromatic triangle-free graph   

Proof:
Let               with copies        and additional vertex  

 is an independent set of   
Thus any triangle containing a point   must have both other points in     
This necessarily gives us a a triangle entirely in  , which doesn't exist

If  is a proper  -coloring of  , set            and         to get a proper    -

coloring of   

Now, suppose by way of contradiction  is a proper  -coloring of   
WLOG       
Thus               
Let  be the color class in     corresponding to color  

For each     , modify      to be equal to      

Only place this could cause problems is on edges of form     with     and    
      
For any such edge,     is also an edge, so no color issues arise.

Thus,  gives rise to a proper    -coloring of  , which does not exist by assumption.

Note:
If  is color-critical, Mycielski's construction gives a new color-critical graph.

Note:
The graphs you get by repeatedly applying this construction are not, in general, the smallest 
possible examples. The number of vertices here grows exponentially. It's enough for it to grow a 
bit faster than quadratically.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Section 5.2 - Structure of  -Chromatic Graphs
Wednesday, April 12, 2023 2:53 PM

   Graph Theory Page 85    



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We now know that clique number and chromatic number can differ greatly.
Is there any other way for us to infer information about the structure of a  -chromatic graph?

Proposition:
Every  -chromatic graph with  vertices has at least  choose  edges.
Equality holds for a complete graph plus isolated vertices.

Proof:
For every pair of colors    there must be an edge between vertices of color  and those of color  -
otherwise we could amalgamate the colors.

Definition:
A complete multipartite graph is a simple graph  whose vertices can be partitioned into sets so 
that  adjacent to  if and only if    belong to different partite sets.

Equivalently, iff every component of  
  

is a complete graph.

When    , write         
as the complete  -partite graph with partite set sizes specified

Definition:
The Turan graph     is the complete  -partite graph with  vertices where partite sets differ in 
size by at most 1
(describe based on pigeonhole principle)

Lemma:
Among simple  -partite graphs with  vertices, the Turan graph is the unique graph with the most 
edges.

Proof:
Need only consider complete  -partite graphs. The idea is simply to move a vertex from the 
largest partite set (size  ) to the smallest partite set (size  ), gaining    edges but losing  
This is positive iff all partite sets are within size  of one another

Theorem: (Turan 1941)
Among  -vertex simple graphs with no    -clique,     has the maximum number of edges.

Proof:
Certainly there cannot be an    -clique in     by  -colorability

Our lemma will give us the result if we can prove the maximum is achieved by an  -partite graph.
We claim:

if  has no    -clique, then there is an  -partite graph  with the same vertex set as  
and at least as many edges

We work by induction on  
   , there aren't any edges.
Take    

Suppose  has no      -clique and has  vertices and       has degree   
    
Take   the induced subgraph on neighbors of  . 
In  ,  is adjacent to all points in   , so there can't be any  -cliques in   

By induction hypothesis, there exists    -partite   with vertex set     with 
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Let            and  be the graph formed from   by adding all possile 
edges between     and  

 is an independent set, so  is  -partite
Bounds on number of edges:

                 

                 

 

   

Corresponding terms in the first equation are larger (max degree is  )

Note:
The Turan graph is the unique extremal graph

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~
Characterizing color-critical graphs is another important task

Remark:
If  has no isolated vertices,  is color-critical if and only if for every       ,        
    

Proposition:
Let  be  -critical
For       , there is a proper  -coloring in which the color on  appears nowhere else, and 
the other    colors all appear on     
For       , every proper    -coloring of    gives the same color to the two endpoints 
of  

Proof:
Remove the corresponding object and both proofs are trivial.

Recall that         if  is  -critical. We can actually use Koenig-Egervary to get          
as well

Lemma: (Dirac 1953)
Let  have       and let    be a partition of     
If     and     are  -colorable, then the edge cut      has at least  edges

Proof: (Dirac-Sorensen-Toft 1974, Kainen)
Let        and        be the color classes

If there's no edge between   and   , then      is an independent set in  

(need to examine possible pairings)
Make a bipartite graph  with vertices        and        and edges connecting   and   
if there is no edge in  between them
If          ,  has at least       edges 

 vertices can cover at most   edges in a subgraph of     , so     cannot be covered 
by    vertices
Apply Koenig-Egervary to get a perfect matching

Assign a color to each independent set resulting from the matching

Theorem: (Dirac 1953)
Every  -critical graph is    -connected

Proof:
 be  -critical,      a minimum edge cut, both are    -colorable, so        
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 be  -critical,      a minimum edge cut, both are    -colorable, so            

(lecture ended here)
There's a useful way to split up graphs that  describes more of the relationship between chromatic 
number and size of vertex cuts.

Definition:
Let       . An  -lobe of  is an induced subgraph of  whose vertex set consists of  and a 
component of    
(draw)

The union of all  -lobes of  is clearly  itself.

Proposition:
If  is  -critical, then  has no cutset consisting of pairwise adjacent vertices.
Notably, if        is a cutset of  , then  is not adjacent to  and  has an  -lobe  with 

         

Proof:
Take  a cutset with lobes        

Each   is    -colorable
If all points of  are adjacent, for each   , the colors of all points in  must be distinct from one 
another

By permuting colors, can make the colors on each        agree for all  

This gives a    -coloring of  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~
A topic that will soon be important - forced subdivisions

Definition:
An  -subdivision is a graph obtained from  by successive edge subdivisions. 
(Equivalently, a graph obtained from  by replacing edges with pairwise internally-disjoint 
paths.

(draw)

Theorem: (Dirac 1952a)
Every graph with chromatic number at least 4 contains a   subdivision.

Proof:
Induct on     
   means our graph is   

   
Let  be a 4-critical subgraph of  

 cannot have a cut-vertex (by prev proposition)
If       and we have a cutset        , then these points are not adjacent

There must be some  -lobe   such that           

                        , so apply IH

We have a   subdivision  in      

If  doesn't contain   , no problems
If it does, replace   in  with an    -path through a different  -lobe of  
(One must exist because    both must have a neighbor in all components of 
   )
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   )

May now assume  is 3-connected.
Pick       ,    is 2-connected so there exists a cycle  having length at least 
3.
By Fan-Lemma, there exists an    -fan of size 3

This is a subdivision of   
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There's another interesting topic about colorings which we haven't touched yet - counting them.
Namely, how many proper  -colorings of a graph are there?

Definition:
Given    and a graph  , the value       is the number of proper colorings           
The set of available colors is            , but we do not insist that the  colors all be used 
in a given coloring.
Permuting the colors of a given coloring is regarded as producing a different coloring.

Question:
What is        ?

What is    
  

    ?

Proposition:
If  is a tree with  vertices, then                 

Proof:
Fix a vertex    as the root. It can be colored arbitrarily.
Extending the proper coloring on from there in order of the tree, at each step we can assign 
     colors to each newly reached vertex

We are starting to notice a pattern here - we keep getting polynomials of degree  

Proposition:
Let                    . If      is the number of partitions (order does not 

matter!) of     into  nonempty independent sets, then

                 

    

   

which is a polynomial in  of degree     

Proof:
If a given coloring uses exactly  colors, it partitions     into  nonempty independent sets.
This can happen in      ways, by definition
If  colors are available but I'm only using  of them, there are     ways to pick which colors 

are used and in which order.

Corollary:
      is monic

Proof:
       

Example:
Consider      good luck with this co putation  

Note:

Section 5.3 - Enumerative Aspects
Monday, April 17, 2023 3:20 PM
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Note:
Unless the graph has no edges,        

This is usually a horrifically complex way to compute the chromatic polynomial.

[remember that    is the graph contracted along the edge  - also note that multiple edges don't 
affect colorings in any way, so WLOG we may think only of simple graphs]
Theorem: (Chromatic Recurrence)

If  is a simple graph and       , then                         

Proof:
Every proper  -coloring of  is a proper  -coloring of    
Proper  -colorings of    are proper  -colorings of  if and only if they assign different 
colors to endpoints of  
If it assigns the same color to endpoints of  , it will correspond to a proper  -coloring of    

Example:
Compute       for   again, using previous propositions about trees and complete graphs.

This past proposition is a lot like the recursive one we had for computing the number of spanning 
trees. It is about as useful. Characterizing the chromatic polynomial more explicitly is an important 
(and fairly tricky!) topic.
Theorem: (Whitney 1933)

The chromatic polynomial       of a simple graph has degree     , with integer coefficients 
alternating in sign and is of the form              

Proof:
We induct on     . This follows from the empty graph case if       
Suppose  has  vertices.

   and    have fewer edges, so the inductive case applies to each

                        

                        

                       

              

If you want a technically complete formula, this one is the result of repeatedly using the recursive 
definition ad nauseum. It is totally impractical to actually use, since it's a summation with 
exponentially many terms.
Theorem: (Whitney 1932)

Let     denote the number of components of a graph  
Given a set       , let     denote the spanning subgraph with edge set  
Then 

                       

 

      

I won't even do the proof of this, because it's essentially a useless formula.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~
I think I will skip the rest of this section, so as to spend more time on subsequent material.
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Note:
During this whole semester, we've drawn graphs on the board or on paper. Doing so is necessarily 
(and ideally inconsequentially!) embedding our graphs in the plane. However, sometimes when 
we do so edges of our graphs cross each other. This makes the graph much more difficult to read, 
and also in some intuitive sense makes the drawing of the graph seem less natural.

Proposition:
  and     cannot be drawn without crossings.

(Definition: A chord of a path or cycle  is an edge whose endpoints both lie in  
Proof:

Draw either graph in the plane and let  be a spanning cycle. If no edges cross, other edges are 
either inside or outside this cycle.
Say that two chords conflict if their endpoints on  occur in alternating order - two such chords 
cannot both be internal or external
Both   and     have 3 pairwise conflicting chords for a spanning cycle

Ok, so this is a start point for the idea of drawing graphs in the plane - it isn't always possible. But to get 
at this more systematically, we need a clearer definition of what 'drawing' is

Definition:
A curve is the image of a continuous function           

A polygonal curve is a curve consisting of finitely many line segments
A    -curve starts and ends at  and  , respectively
A curve is closed if its first and last points coincide, and simple if it has no repeated points save 
possibly the first and last

A drawing of a graph  is a function  with domain          which assigns each vertex to 
a point 

       

and assigns each edge with endpoints    to a polygonal          -curve
The images of vertices must be distinct.
A point of           that is not a common endpoint for distinct edges     is a crossing

(I won't prove this, but we can assume WLOG that three way crossings never happen, by slightly 
perturbing drawings)

These definitions allow us to specify graphs which can be drawn nicely.
Definition:

A graph is planar if it has a drawing without crossings
Such a drawing is a planar embedding of  
A plane graph is a particular planar embedding of a planar graph

Key to this theory will be thinking about the regions enclosed by drawings of graphs.
Definition:

An open set in the plane is a set     such that     , there is a small ball around  
contained wholly in  
A region is an open set  containing a polygonal    -curve for every      
The faces of a plane graph are the maximal regions of the plane that contain no point used in 

Section 6.1 - Embeddings and Euler's Formula
Wednesday, April 19, 2023 2:50 PM
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The faces of a plane graph are the maximal regions of the plane that contain no point used in 
the embedding.

Note that every graph we draw has a bunch of internal faces and one enormous unbounded face

Theorem: (Jordan Curve Theorem - special case)
A simple closed polygonal curve  consisting of finitely many segments partitions the plane 
into exactly two faces, each having  as boundary.

Proof: (skip)

Definition:
Given a plane graph  , the dual graph   is a plane graph whose vertices correspond to the 
faces of  
(Edges of   connect faces of  which are separated by an edge of  .)
In particular, for each edge  of  which borders on faces    , we obtain a dual edge    
     connecting    

(draw)

Example:
Draw the dual graph of an embedding of the cube (this should be another Euler solid)

Note:
For any planar graph      is (naturally) isomorphic to  
I won't prove this because I would have to be more careful about how I'm defining the 
embedding of the dual graph.

Note:
Dual graphs may have multiple edges
(draw)

Note:
Two embeddings of a planar graph may have nonisomorphic duals (example in the book)

This doesn't happen if the graph is 3-connected

Definition:
The length of a face in a plane graph  is the total length of the closed  walk(s) in  bounding 
the face

(there's only one walk if the graph is connected)

Proposition:
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Proposition:
If      is the length of face   in a plane graph  , then             

 
 

Proof:
          and the length of a face is the degree in   of that face
Sum up degrees in dual graph.

Thinking about planar graphs and their duals presents a nice little variation of coloring problems.
Coloring nonadjacent vertices of   amounts to coloring nonadjacent faces of  . As such, we can 
talk about coloring maps in terms of colorings of duals of planar graphs!
And coloring the duals of planar graphs is an identical problem to coloring planar graphs (since 
every such graph is the dual of its dual)

Theorem: (Four Color Theorem)
Every planar graph admits a proper 4-coloring.

This proof is a little bit tricky

We can think a bit more concretely about the duality relationship here, though
Many of the concepts which we've talked about in class have a really nice duality relationship for 
planar graphs (this does not extend to non-planar graphs!)
Theorem: 

Edges in a plane graph  form a cycle if and only if the corresponding dual edges form a bond 
(minimal edge cut) in   

Proof:
Take       
If  does not contain a cycle, it does not enclose a region

Then      is connected (there's a way to get from any face to any other)
Thus   does not contain an edge cut

If  makes up the edges of a cycle, by Jordan curve theorem this encloses a region
Corresponding edge set   contains all dual edges between this region and outside 
(again, by JCT)
Thus   contains an edge cut

If  contains a cycle, then   contains an edge cut

Hence cycles in     are minimal edge cuts in      

We can say even more!
Theorem:

For a plane graph  , the following are equivalent
 is bipartite
Every face of  has even length
The dual graph   is Eulerian

Proof:
B and C are equivalent by our standard characterization theorem for Eulerian graphs, just 
applied to   

A   B
A face boundary consists of closed walks. Odd closed walks contain odd cycles, none in 
bipartite

B   A
Let  a cycle in  , it forms a simple closed curve enclosing a region  

   Graph Theory Page 94    



Let  a cycle in  , it forms a simple closed curve enclosing a region  
Every face of  is entirely in  or entirely out of  
Sum face lengths for all faces inside  , get an even number

This sum counts each edge in  once, and each edge entirely contained in  twice
Hence all cycles have even length.

For planar graphs, we can establish a relation between the number of vertices, edges, and faces

Theorem: (Euler 1758)
If a connected plane graph  has exactly  vertices,  edges, and  faces, then 

       

Proof:
We induct on  .
   , then  consists only of loops. Each is a non-intersecting closed curve, and there's an 
outer region plus 1 for each edge.
   

 is connected, so it has an edge which isn't a loop. Select such an edge,  
Contract  along  to get a new plane graph with         

      
      
    

Apply inductive hypothesis

Note:
If  has  components,          instead (this is effectively just a corollary of the 
main theorem)

Theorem:
If  is a simple planar graph with at least three vertices, then             
If  is triangle-free, then             

Proof:
WLOG by adding edges, may assume  is connected

Since  is simple, there are no loops and no multiple edges. With at least three vertices, so 
every face is bordered by at least 3 edges.

            

Put into Euler's formula

If triangle-free, all faces have length at least 4, do the same thing

Corollary:
  and     are nonplanar

Proof:
For   ,    ,     , violates previous

For     , no triangles and    ,    

Definition:
A maximal planar graph is a simple planar graph that is not a spaning subgraph of another 
planar graph.
A triangulation is a simple plane graph where every face boundary is a 3-cycle
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A triangulation is a simple plane graph where every face boundary is a 3-cycle

Proposition:
For a simple  -vertex plane graph  , TFAE

 has     edges
 is a triangulation
 is a maximal plane graph

Proof:
First two are equivalent by noting that  is a triangulation iff        for all faces, so    

  , thus equality

Second two are equivalent by noting that we can add an edge to split up a face iff the face is 
not bounded by a triangle (any way to split it is a chord of the cycle)
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Motivating Question:
Which graphs are and are not planar?

Proposition:
If  has a subgraph that is a subdivision of   or     , then  is nonplanar

Proof:
Every subgraph of a planar subgraph is planar, so if  has any nonplanar subsets it is not planar
WLOG may take  a subdivision of   or     

If  was planar, we could contract its edges to obtain a planar embedding of   or     

Theorem: (Kuratowski 1930)
A graph is planar if and only if it does not contain a subdivision of   or     

This proof is a bit longer, so we'll break the proof up into lemmas in and of itself.

Definition:
A Kuratowski subgraph of  is a subgraph of  that is a subdivision of   or     

A minimal nonplanar graph is a nonplanar graph such that every proper subgraph is planar

Goal 1: Show that a smallest possible nonplanar graph with no Kuratowski subgraph is 3-
connected

Lemma:
If  is the edge set of the face of a planar embedding of  , then  has an embedding with  the 
edge set of the unbounded face.

Proof:
Embed on the sphere instead, then rotate desired face

Lemma:
Every minimal nonplanar graph is 2-connected

Proof:
Let  be a minimal nonplanar graph. 
If  disconnected, embed one component inside one face of the rest (contradiction)

If  has a cut vertex  , let        be    -lobes of  
Each is planar
Each can be embedded with  on the outside face
Squeeze embeddings of each into sectors of the plane centered on  to embed whole 
graph (contradiction)

Lemma:
Let        be a separating 2-set of  . If  is nonplanar, adding   some  -lobe of  yields a 
nonplanar graph

Proof:
Let        be  -lobes of  , let         

Section 6.2 - Characterization of Planar Graphs
Wednesday, April 19, 2023 4:56 PM
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Let        be  -lobes of  , let         
If all   are planar, can embed all with   on outside face

Then, starting with   , may embed   inside a single face with boundary containing   
Then, delete   if  doesn't contain it.

Lemma:
If  is a graph with fewest edges among all nonplanar graphs without Kuratowski subgraphs, 
then  is 3-connected

Proof:
 must be a minimal nonplanar graph, so  is 2-connected. Let        a separating set
Union of   with some  -lobe  is nonplanar.

By minimality,     must have a Kuratowski subgraph  .
All of  is in  , except possibly   

Take an    -path through some other  -lobe
We obtain a Kuratowski subgraph of  

Hence  is 3-connected

Goal 2: Show that every 3-connected graph with no Kuratowski subgraph is planar.

Our strategy is going to be inductive, but we need a bit of groundwork to establish the technique 
we're going to use to reduce our graphs in size. The operation will be a contraction of a well chosen 
edge.

Fact: (don't bother to prove this one, or leave it as an exercise)
Every 3-connected graph  with at least 5 vertices has an edge  such that    is 3-connected

We need to argue that this operation doesn't create any Kuratowski subgraphs.

Lemma:
If  has no Kuratowski subgraph, then neither does    

Useful term for this proof:
A branch vertex of a subdivision   of  is a vertex of degree at least 3 in   

(they don't correspond to the interior of created paths in the subdivision)
Proof:

We wish to show that if    has a Kuratowski subgraph, then so does  

Let     and let      be the contracted vertex.
If Kuratowski subgraph  doesn't contain  , we're done.
If       but isn't a branch vertex:

we get a Kuratowski subgraph of  by taking  and replacing  with  or  or  

If       is a branch vertex but at most one edge incident on  in  is incident to  in  :
Expand  into   

If       is a branch vertex with exactly 4 edges in  incident on  , 2 of which are incident 
on  in  

 is a subdivision of   (only way to get 4 incident)
Let      be the next branch vertices in  reached by following the paths from the 
edges incident on  
Let      be similarly defined for  
There are only 5 branch vertices, so these are all of them. (draw)
Draw corresponding subgraph with  replaced by   , delete     -path and     -path
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Draw corresponding subgraph with  replaced by   , delete     -path and     -path
This is  a     subdivision

We're almost ready. We'll actually prove something better in the process.
Definition:

A convex embedding of a graph is a planar embedding in which each face is a convex region.

Theorem: (Tutte 1960)
If  is a 3-connected graph with no subdivision of   or     , then  has a convex embedding 
in the plane with no three vertices on a line.

Proof: (Thomassen 1980)
Induction on     
   , the only possible graph is   , which has a convex embedding. (a triangle with a point in 
the middle)

      
There is an edge  such that    is 3-connected, contracting it gives a vertex  
     has no Kuratowski subgraph, so  has a convex embedding with no three 
vertices on a line by induction.

If one deletes all edges incident on  (but not  ) in this embedding, some face contains  
(might be unbounded face)
   is 2-connected, so boundary of this face is a cycle  , which contains all neighbors 
of  

each is a neighbor of  or  in the original graph [replace  by   
In cyclic order in  

Let        be neighbors of  

If all neighbors of  lie between   and     (inclusive), we're done [draw picture with  
placed in the face]

If this doesn't happen, two possibilities:
 has three neighbors      which are all neighbors of  1)
 has neighbors    such that            are in cyclic order on  2)

Case 1 -  along with edges from    to      forms a   subdivision
Case 2 -  along with paths    ,        ,   forms a     subdivision
(draw both of these)

We're done.
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5% from topic proposals
50% of grade from presentations
45% of grade from paper

Presentation Rubric

5 points 4 points 3 points 2 points 1 point 0 points

Presentation Fits 
Parameters of 
Assignment

12-18 minutes Too long, cut off Too short No presentation

Practice 
Presentation

Fully prepared mostly prepared somewhat 
prepared

unprepared no practice 
presentation

Quality of 
Presentation

Engaging, well 
spoken, clear 
familiarity with 
material

Mostly well spoken, well 
demonstrated 
understanding

Mostly familiar 
with material, not 
engaging with 
audience

Seems unfamiliar with 
material or reading 
from a script

Seems unfamiliar with 
material and reading 
from a script

Seems unfamiliar 
with material and 
unprepared

Use of 
Slides/Chalkboard

Effective use of 
visual aids to 
reinforce material in 
presentation

Use of visual aids, but 
limited communication 
of what they convey to 
the audience

Visual aids used, 
but not adequately 
explained

Some purely verbal 
explanations making 
no or limited use of 
visual aids

Many purely verbal 
explanations making 
no or limited use of 
visual aids

No or completely 
ineffective use of 
slides or 
chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Clarity of 
Explanation (this 
category counts 
twice in score)

Presentation stands 
on own right as 
effective explanation 
of ideas

Supplemented with 
questions, presentation 
is effective explanation 
of ideas
Understandable to peers

Presentation relies 
on some 
unexplained 
background, but 
mostly stands on 
own
Mostly 
understandable to 
peers

Heavy reliance on 
background material 
in order to make 
presentation 
understandable
Not understandable to 
peers

Presentation is 
incoherent, with 
even background 
knowledge being 
insufficient to 
understand 
material

Response to 
Questions

Responds to 
questions with 
insight, 
demonstrates 
understanding

Response to questions 
demonstrates some 
understanding

Some unclear or 
muddled 
explanations fail to 
demonstrate 
understanding, 
others more 
successful

Student actively 
confused by questions, 
little thought seems to 
have gone into the 
topic aside from the 
narrow confines of the 
talk

Student did not 
provide answers to 
any questions and 
fails to 
demonstrate any 
external 
knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers

List of Students:

Qi Qi (+1 point for early practice)
Questions to ask:

You've given us an interesting characterization of bipartite graphs. Can you say anything about k -partite graphs?1.
Does the largest eigenvalue of a graph tell us anything about a graph? How large can it be?2.
Can you tell us more about the relationship between this Green's function and the graph Laplacian?3.

5 points 4 points 3 points 2 points 1 point 0 points

Presentation Fits 
Parameters of 
Assignment

12-18 minutes Too long, cut off Too short No presentation

Practice 
Presentation

Fully prepared mostly prepared somewhat 
prepared

unprepared no practice 
presentation

Quality of 
Presentation

Engaging, well 
spoken, clear 
familiarity with 
material

Mostly well spoken, well 
demonstrated 
understanding

Mostly familiar 
with material, not 
engaging with 
audience

Seems unfamiliar with 
material or reading 
from a script

Seems unfamiliar with 
material and reading 
from a script

Seems unfamiliar 
with material and 
unprepared

Use of 
Slides/Chalkboard

Effective use of 
visual aids to 
reinforce material in 
presentation

Use of visual aids, but 
limited communication 
of what they convey to 
the audience

Visual aids used, 
but not adequately 
explained

Some purely verbal 
explanations making 
no or limited use of 
visual aids

Many purely verbal 
explanations making 
no or limited use of 
visual aids

No or completely 
ineffective use of 
slides or 
chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Clarity of 
Explanation (this 
category counts 
twice in score)

Presentation stands 
on own right as 
effective explanation 
of ideas

Supplemented with 
questions, presentation 
is effective explanation 
of ideas
Understandable to peers

Presentation relies 
on some 
unexplained 
background, but 
mostly stands on 
own
Mostly 
understandable to 
peers

Heavy reliance on 
background material 
in order to make 
presentation 
understandable
Not understandable to 
peers

Presentation is 
incoherent, with 
even background 
knowledge being 
insufficient to 
understand 
material

Response to 
Questions

Responds to 
questions with 
insight, 
demonstrates 
understanding

Response to questions 
demonstrates some 
understanding

Some unclear or 
muddled 
explanations fail to 
demonstrate 
understanding, 
others more 
successful

Student actively 
confused by questions, 
little thought seems to 
have gone into the 
topic aside from the 
narrow confines of the 
talk

Student did not 
provide answers to 
any questions and 
fails to 
demonstrate any 
external 
knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers

Yutian Wang
Questions to Ask

You've defined ergodicity as the existence of this limiting state. Can you say anything about the rate of convergence to that state?1.
Suppose I take a Markov chain with a single recurrence stage, but a period greater than 1. Is there anything you can do to it to understand its behavior in a 
way similar to what you've done here?

2.

Suppose the Markov matrix is symmetric. Can I say anything more about my Markov chain?3.

5 points 4 points 3 points 2 points 1 point 0 points

Presentation Fits 
Parameters of 
Assignment

12-18 minutes Too long, cut off Too short No presentation

Practice 
Presentation

Fully prepared mostly prepared somewhat 
prepared

unprepared no practice 
presentation

Quality of 
Presentation

Engaging, well 
spoken, clear 
familiarity with 
material

Mostly well spoken, well 
demonstrated 
understanding

Mostly familiar 
with material, not 
engaging with 
audience

Seems unfamiliar with 
material or reading 
from a script

Seems unfamiliar with 
material and reading 
from a script

Seems unfamiliar 
with material and 
unprepared

Use of 
Slides/Chalkboard

Effective use of 
visual aids to 
reinforce material in 
presentation

Use of visual aids, but 
limited communication 
of what they convey to 
the audience

Visual aids used, 
but not adequately 
explained

Some purely verbal 
explanations making 
no or limited use of 
visual aids

Many purely verbal 
explanations making 
no or limited use of 
visual aids

No or completely 
ineffective use of 
slides or 
chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Final Paper Rubric

5 points 4 points 3 points 2 points 1 point 0 points

Paper Length 10-20 pages Length has been padded by 
writing up trivialities or 
excessive examples

Length has been 
padded with pictures 
and formatting

Not long enough No paper

Bibliography Sufficient sources, 
reasonable formatting

Sufficient sources, no 
formatting of any 
reasonable kind

Sufficient sources, but too 
heavy a reliance on a single 
source

Bad sources used 
without any formatting

Insufficient sources None

Grammar and 
Spelling

Fine Mostly insignificant errors Grammatical errors 
mildly impair 
understanding

Severe grammatical 
errors impact 
comprehensibility

Work is not 
written in full 
sentences.

Clarity of 
Exposition 
(counts twice)

Writing is exceptionally 
clear and understandable, 
at a level readable by a 
student in class

At most one significant 
exception to the previous

Writing is in some places is too 
dense or assumes too much of 
the reader.

Writing is in many 
places too dense or 
assumes too much of 
the reader. 
OR assumes too little 
of the reader

Incomprehensible

Explanations in 
Own Words

Yes No

Mathematical 
Content 
(counts twice)

Paper develops in depth 
ideas of mathematical or 
applied interest, related to 
graph theory

Reasonable depth of 
discussion, but weak 
connection to graph 
theory

Less depth of discussion, well-
explored connection to graph 
theory

Less depth of 
discussion, weak 
connection to graph 
theory

Discussion is 
surface level, but 
connected to graph 
theory

Discussion is 
surface level, 
weak connection 
to graph theory

Mathematical 
Validity

Statements in paper are 
mathematically valid, free 
from even minor typos, 
and formatted well

Minor typos or minor bad 
formatting decisions with 
respect to mathematics 
have occurred

Some statements are not 
mathematically valid or are 
not stated sufficiently 
precisely

Key portions of the 
paper are not 
mathematically valid or 
not stated sufficiently 
precisely OR many 
significant typos or bad 
formatting decisions

The previous, but 
with AND

Paper is so vague 
that virtually no 
statements are 
mathematically 
meaningful

Final Projects
Wednesday, May 3, 2023 5:24 PM
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presentation the audience visual aids visual aids chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Clarity of 
Explanation (this 
category counts 
twice in score)

Presentation stands 
on own right as 
effective explanation 
of ideas

Supplemented with 
questions, presentation 
is effective explanation 
of ideas
Understandable to peers

Presentation relies 
on some 
unexplained 
background, but 
mostly stands on 
own
Mostly 
understandable to 
peers

Heavy reliance on 
background material 
in order to make 
presentation 
understandable
Not understandable to 
peers

Presentation is 
incoherent, with 
even background 
knowledge being 
insufficient to 
understand 
material

Response to 
Questions

Responds to 
questions with 
insight, 
demonstrates 
understanding

Response to questions 
demonstrates some 
understanding

Some unclear or 
muddled 
explanations fail to 
demonstrate 
understanding, 
others more 
successful

Student actively 
confused by questions, 
little thought seems to 
have gone into the 
topic aside from the 
narrow confines of the 
talk

Student did not 
provide answers to 
any questions and 
fails to 
demonstrate any 
external 
knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers

Aaron Weiner
Questions to ask

Your algorithm finds the shortest path among those with the fewest number of transfers. Suppose I wanted to strike a balance between minimizing 
travelled distance and minimizing number of transfers, is there any way to take these structures you've defined and use them to handle this optimization?

1.

You've discussed my way of finding an efficient route through a network as a traveler. As a designer of a network, is there a ny way for us to use this 
paradigm to talk about how efficient the network is as a whole?

2.

5 points 4 points 3 points 2 points 1 point 0 points

Presentation Fits 
Parameters of 
Assignment

12-18 minutes Too long, cut off Too short No presentation

Practice 
Presentation

Fully prepared mostly prepared somewhat 
prepared

unprepared no practice 
presentation

Quality of 
Presentation

Engaging, well 
spoken, clear 
familiarity with 
material

Mostly well spoken, well 
demonstrated 
understanding

Mostly familiar 
with material, not 
engaging with 
audience

Seems unfamiliar with 
material or reading 
from a script

Seems unfamiliar with 
material and reading 
from a script

Seems unfamiliar 
with material and 
unprepared

Use of 
Slides/Chalkboard

Effective use of 
visual aids to 
reinforce material in 
presentation

Use of visual aids, but 
limited communication 
of what they convey to 
the audience

Visual aids used, 
but not adequately 
explained

Some purely verbal 
explanations making 
no or limited use of 
visual aids

Many purely verbal 
explanations making 
no or limited use of 
visual aids

No or completely 
ineffective use of 
slides or 
chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Clarity of 
Explanation (this 
category counts 
twice in score)

Presentation stands 
on own right as 
effective explanation 
of ideas

Supplemented with 
questions, presentation 
is effective explanation 
of ideas
Understandable to peers

Presentation relies 
on some 
unexplained 
background, but 
mostly stands on 
own
Mostly 
understandable to 
peers

Heavy reliance on 
background material 
in order to make 
presentation 
understandable
Not understandable to 
peers

Presentation is 
incoherent, with 
even background 
knowledge being 
insufficient to 
understand 
material

Response to 
Questions

Responds to 
questions with 
insight, 
demonstrates 
understanding

Response to questions 
demonstrates some 
understanding

Some unclear or 
muddled 
explanations fail to 
demonstrate 
understanding, 
others more 
successful

Student actively 
confused by questions, 
little thought seems to 
have gone into the 
topic aside from the 
narrow confines of the 
talk

Student did not 
provide answers to 
any questions and 
fails to 
demonstrate any 
external 
knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers

William Hagerstrom
Questions to ask

Suppose I have a game in which it is possible for a move to take me back to an earlier state of the game (the game tree is no longer a tree). Can I modify 
this algorithm to still work in such a setting?

1.

How do we evaluate the quality of leaves when we've reached max iteration depth?2.
How can I guarantee that alpha-beta pruning will provide a speed-up over minimax? (If I evaluate "bad strategies" in the game tree first, alpha -beta 
pruning won't help much.)

3.

5 points 4 points 3 points 2 points 1 point 0 points

Presentation Fits 
Parameters of 
Assignment

12-18 minutes Too long, cut off Too short No presentation

Practice 
Presentation

Fully prepared mostly prepared somewhat 
prepared

unprepared no practice 
presentation

Quality of 
Presentation

Engaging, well 
spoken, clear 
familiarity with 
material

Mostly well spoken, well 
demonstrated 
understanding

Mostly familiar 
with material, not 
engaging with 
audience

Seems unfamiliar with 
material or reading 
from a script

Seems unfamiliar with 
material and reading 
from a script

Seems unfamiliar 
with material and 
unprepared

Use of 
Slides/Chalkboard

Effective use of 
visual aids to 
reinforce material in 
presentation

Use of visual aids, but 
limited communication 
of what they convey to 
the audience

Visual aids used, 
but not adequately 
explained

Some purely verbal 
explanations making 
no or limited use of 
visual aids

Many purely verbal 
explanations making 
no or limited use of 
visual aids

No or completely 
ineffective use of 
slides or 
chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Clarity of 
Explanation (this 
category counts 
twice in score)

Presentation stands 
on own right as 
effective explanation 
of ideas

Supplemented with 
questions, presentation 
is effective explanation 
of ideas
Understandable to peers

Presentation relies 
on some 
unexplained 
background, but 
mostly stands on 
own
Mostly 
understandable to 
peers

Heavy reliance on 
background material 
in order to make 
presentation 
understandable
Not understandable to 
peers

Presentation is 
incoherent, with 
even background 
knowledge being 
insufficient to 
understand 
material

Response to 
Questions

Responds to 
questions with 
insight, 
demonstrates 
understanding

Response to questions 
demonstrates some 
understanding

Some unclear or 
muddled 
explanations fail to 
demonstrate 
understanding, 
others more 
successful

Student actively 
confused by questions, 
little thought seems to 
have gone into the 
topic aside from the 
narrow confines of the 
talk

Student did not 
provide answers to 
any questions and 
fails to 
demonstrate any 
external 
knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers
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successful talk knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers

Vuong Ho
Questions to Ask

Suppose I consider a complete graph on 4 vertices with the diagonals having large weights. Can you talk us through specifical ly how an ant colony 
algorithm would work and how it would decide not to pick the diagonals?

1.

The ants build solutions out of "solution components". How are these "components" related to the structure of a graph?2.
Many of these algorithms seem to require careful tuning of parameters for effective performance. Before running such a comput ationally intensive 
algorithm, how can we be sure we've chosen these randomly?

3.

5 points 4 points 3 points 2 points 1 point 0 points

Presentation Fits 
Parameters of 
Assignment

12-18 minutes Too long, cut off Too short No presentation

Practice 
Presentation

Fully prepared mostly prepared somewhat 
prepared

unprepared no practice 
presentation

Quality of 
Presentation

Engaging, well 
spoken, clear 
familiarity with 
material

Mostly well spoken, well 
demonstrated 
understanding

Mostly familiar 
with material, not 
engaging with 
audience

Seems unfamiliar with 
material or reading 
from a script

Seems unfamiliar with 
material and reading 
from a script

Seems unfamiliar 
with material and 
unprepared

Use of 
Slides/Chalkboard

Effective use of 
visual aids to 
reinforce material in 
presentation

Use of visual aids, but 
limited communication 
of what they convey to 
the audience

Visual aids used, 
but not adequately 
explained

Some purely verbal 
explanations making 
no or limited use of 
visual aids

Many purely verbal 
explanations making 
no or limited use of 
visual aids

No or completely 
ineffective use of 
slides or 
chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Clarity of 
Explanation (this 
category counts 
twice in score)

Presentation stands 
on own right as 
effective explanation 
of ideas

Supplemented with 
questions, presentation 
is effective explanation 
of ideas
Understandable to peers

Presentation relies 
on some 
unexplained 
background, but 
mostly stands on 
own
Mostly 
understandable to 
peers

Heavy reliance on 
background material 
in order to make 
presentation 
understandable
Not understandable to 
peers

Presentation is 
incoherent, with 
even background 
knowledge being 
insufficient to 
understand 
material

Response to 
Questions

Responds to 
questions with 
insight, 
demonstrates 
understanding

Response to questions 
demonstrates some 
understanding

Some unclear or 
muddled 
explanations fail to 
demonstrate 
understanding, 
others more 
successful

Student actively 
confused by questions, 
little thought seems to 
have gone into the 
topic aside from the 
narrow confines of the 
talk

Student did not 
provide answers to 
any questions and 
fails to 
demonstrate any 
external 
knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers

Zeyu Nie
Questions to ask

Are there any improvements that can be made to the Christofides algorithm to get better than a 3/2 -approximation?1.
Can you talk us through the Held-Karp algorithm applied to a complete graph on four vertices with diagonals having large weights?2.
The initial step of your discussion takes us from a general graph to a complete graph by adding edges with large weights. How ever, this removes some of 
the structure of the graph that might be useful - some graphs might have bottlenecks which limit the possibilities we have to search through. Are there any 
common algorithms for TSP that make use of detailed information about the structure of the underlying graph?

3.

5 points 4 points 3 points 2 points 1 point 0 points

Presentation Fits 
Parameters of 
Assignment

12-18 minutes Too long, cut off Too short No presentation

Practice 
Presentation

Fully prepared mostly prepared somewhat 
prepared

unprepared no practice 
presentation

Quality of 
Presentation

Engaging, well 
spoken, clear 
familiarity with 
material

Mostly well spoken, well 
demonstrated 
understanding

Mostly familiar 
with material, not 
engaging with 
audience

Seems unfamiliar with 
material or reading 
from a script

Seems unfamiliar with 
material and reading 
from a script

Seems unfamiliar 
with material and 
unprepared

Use of 
Slides/Chalkboard

Effective use of 
visual aids to 
reinforce material in 
presentation

Use of visual aids, but 
limited communication 
of what they convey to 
the audience

Visual aids used, 
but not adequately 
explained

Some purely verbal 
explanations making 
no or limited use of 
visual aids

Many purely verbal 
explanations making 
no or limited use of 
visual aids

No or completely 
ineffective use of 
slides or 
chalkboard

Mathematical 
Content (this 
category counts 
twice in score)

Good mathematical 
content, relevant to 
graph theory, clearly 
explained in some 
depth

Good mathematical 
content, mostly relevant 
to graph theory, mostly 
explained in some depth

Some 
mathematical 
content, somewhat 
related to graph 
theory, mostly 
explained

Some mathematical 
content, but either not 
related to graph 
theory or not 
explained in much 
detail or only shallowly 
explored

Some mathematical 
content, but very 
shallow and vague 
discussions, seldom 
touching upon ideas 
from graph theory

Mathematical 
content either 
missing or so 
vague so as to be 
absent

Clarity of 
Explanation (this 
category counts 
twice in score)

Presentation stands 
on own right as 
effective explanation 
of ideas

Supplemented with 
questions, presentation 
is effective explanation 
of ideas
Understandable to peers

Presentation relies 
on some 
unexplained 
background, but 
mostly stands on 
own
Mostly 
understandable to 
peers

Heavy reliance on 
background material 
in order to make 
presentation 
understandable
Not understandable to 
peers

Presentation is 
incoherent, with 
even background 
knowledge being 
insufficient to 
understand 
material

Response to 
Questions

Responds to 
questions with 
insight, 
demonstrates 
understanding

Response to questions 
demonstrates some 
understanding

Some unclear or 
muddled 
explanations fail to 
demonstrate 
understanding, 
others more 
successful

Student actively 
confused by questions, 
little thought seems to 
have gone into the 
topic aside from the 
narrow confines of the 
talk

Student did not 
provide answers to 
any questions and 
fails to 
demonstrate any 
external 
knowledge of their 
material

Asked Questions 
of Others

Student asked at 
least one relevant 
question to one of 
their peers

Student asked a 
somewhat relevant 
question to one of 
their peers

No or completely 
irrelevant 
questions asked of 
peers
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